矮蓝麦,赤霉酸敏感型,遗传分析,Rht22,圆锥小麦," /> 矮蓝麦,赤霉酸敏感型,遗传分析,Rht22,圆锥小麦,"/>
Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (12): 1899-1905.doi: 10.3724/SP.J.1006.2015.01899
• RESEARCH ACTIVITIES • Previous Articles Next Articles
ZHOU Qiang1,2,3,YUAN Zhong-Wei1,ZHANG Lian-Quan1,NING Shun-Zong1,REN Yong1,2,3,TAO Jun1,2,3,LI Sheng-Rong2,3,LIU Deng-Cai1,*
[1]Hedden P. The genes of the Green Revolution. Trends Genet, 2003, 19: 5–9 [2]Mathews K L, Chapman S C, Trethowan R, Singh R P, Crossa J, Pfeiffer W, Ginkel M, DeLacy I. Global adaptation of spring bread and durum wheat lines near-isogenic for major reduced height genes. Crop Sci, 2006, 46: 603–613 [3]万平, 王刚, 刘大钧. 麦类作物矮秆基因遗传学和分子遗传学研究利用进展. 麦类作物, 1998, 18: 9–11 Wan P, Wang G, Liu D J.The research and utilization progress of dwarfing gene genetics and molecular genetics for the Tritical crops. Tritical Crops, 1998, 18: 9–11 (in Chinese) [4]Ahmad M, Sorrells M E. Distribution of microsatellite alleles linked to Rht8 dwarfing genes in wheat. Euphytica, 2002, 123: 235–240 [5]McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Appels R, Xia X C. Catalogue of gene symbols for wheat: 2013–2014 Supplement. http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp [6]Burner A, Korzun V, Worland A J. Comparative genetic mapping of loci affecting plant height and development in cereals. Euphyt ica, 1998, 100: 245-248 [7]继增, 丁寿康, 李月华, 张辉. 中国小麦的主要矮秆基因及矮源的研究. 中国农业科学, 1992, 25: 1–5 Jia J Z, Ding S K, Li Y H, Zhang H. Studies of main dwarf genes and dwarf resources on Chinese wheat. Sci Agric Sin, 1992, 25: 1–5 (in Chinese with English abstract) [8]Gale M D, Youssefian S. Dwarfing genes in wheat. In: Russell G E ed. Progress in Plant Breeding (1). Butterworths & London, 1985, pp 1–35 [9] Allan R E, Vogel O A, Craddock J C. Comparative response to gibberellic acid of dwarf, semi-dwarf and standard short and tall winter wheat varieties. Agron J, 1959, 51: 737–740 [10]苏瑾, 彭正松, 杨在君, 魏淑红, 廖明莉, 吴凯. 小麦新矮源矮秆番麦的赤霉素敏感性分析. 西北农业学报, 2012, 21: 28–33 Su J, Peng Z S, Yang Z J, Wei S H, Liao M L, Wu K. Analysis on GA sensitivity of new wheat dwarfing sources Aiganfanmai. Acta Agric Boreali-Occident Sin, 2012, 21: 28–33 (in Chinese with English abstract) [11]Hoisington D, Khairallah M, Reeves T, Ribaut J M, Skovmand B, Taba S, Warburton M. Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci USA, 1999, 96: 5937–5943 [12]Ginkel M van, Ogbonnaya F. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res, 2007, 104: 86–94 [13]Yang W Y, Liu D C, Li J, Zhang L Q, Wei H T, Hu X R, Zheng Y L, He Z H, Zou Y C. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics, 2009, 36: 539–546 [14]Warburton M L, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, Ginkel M van. Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica, 2006, 149: 289–301 [15]张连全. 小麦异源六倍化过程及其在遗传育种中的应用. 四川农业大学博士学位论文, 四川雅安, 2007 Zhang L Q. Allohexaploidization of common wheat and its application in genetics and breeding. PhD Dissertation of Sichuan Agricultural University, Ya’an, China, 2007 (in Chinese with English abstract) [16]邹裕春, 杨武云, 朱华忠, 邹裕春, 杨武云, 朱华忠, 杨恩年, 蒲宗君, 伍铃, 张颙, 汤永禄, 黄钢, 李跃建, 何中虎, Singh R, Rajaram S. CIMMYT种质及育种技术在四川小麦品种改良中的利用. 西南农业学报, 2007, 20: 183–190 Zou Y C, Yang W Y, Zhu H Z, Yang E N, Pu Z J, Wu L, Zhang Y, Tang Y L, Huang G, Li Y J, He Z H, Singh R, Rajaram S. Utilization of CIMMYT germplasm and breeding technology in wheat improvement in Sichuan, China. Southwest China J Agric Sci, 2007, 20: 183–190 (in Chinese with English abstract) [17]董玉琛, 郑殿升. 中国小麦遗传资源. 北京: 中国农业出版社, 2000. pp 20, 43–44 Dong Y C, Zheng D S. Wheat Genetic Resources of China. Beijing: China Agriculture Press, 2000. pp 20, 43–44 (in Chinese) [18]田良才. 矮兰麦矮秆基因的初步分析. 作物品种资源, 1987, (4): 1–3 Tian L C. Preliminary analysis on the dwarfing gene of Ailanmai. Crop Genet Resour, 1987, (4): 1–3 (in Chinese) [19]郭保宏.小麦矮秆遗传型对赤霉酸反应的初步研究. 作物品种资源, 1989, (3): 13-15 Guo B H. Preliminary study on wheat dwarf genotype to GAs treatment. Crop Genet Resour, 1989, (3): 13–15 (in Chinese) [20]Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11–15 [21]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832 [22]Gill K S, Gill B S, Endo T R, Boyko E V. Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics, 1996, 143: 1001–1012 [23]刘光欣, 周永红, 郑有良, 杨瑞武, 丁春邦. 矮秆波兰小麦矮秆性状对赤霉酸反应的研究. 四川农业大学学报, 2002, 20: 81–83 Liu G X, Zhou Y H, Zheng Y L, Yang R W, Ding C B. The reaction of hormone gibberellic acid in dwarfing Polish wheat (Triticum turgidum concv. polonicum) from Tulufan, Xinjiang. J Sichuan Agric Univ, 2002, 20: 81–83 (in Chinese with English abstract) [24]Takeda K. Internode elongation and dwarfism in some Gramineous plants. Gamma Field Symposium, 1977, 16: 1–8 [25]Lanning S P, Martin J M, Stougaard R N, Guillen-Portal F R, Blake N K, Sherman J D, Robbins A M, Kephart K D, Lamb P, Carlson G R, Pumphrey M, Talbert L E. Evaluation of near-isogenic lines for three height-reducing genes in hard red spring wheat. Crop Sci, 2012, 52: 1145–1152 [26]Tang N, Jiang Y, He B R, Hu Y G. The effects of dwarfing genes (Rht-B1b, Rht-D1b, and Rht8) with different sensitivity to GA3 on the coleoptile length and plant height of wheat. Agric Sci China, 2009, 8: 1028–1038 [27]Worland A J, Petrovic S. The gibberellic acid insensitive dwarfing gene from the wheat variety Saitama 27. Euphytica, 1988, 38: 55–63 [28]Flintham J E, Börner A, Worland A J, Gale M D. Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agric Sci, 1997, 128: 11–25 [29]Rebetzke G J, Ellis M H, Bonnett D G, Mickelson B, Condon A G, Richards R A. Height reduction and agronomic performance for selected gibberellin-responsive dwarfing genes in bread wheat (Triticum aestivum L.). Field Crops Res, 2012, 126: 87–96 [30]刘秉华, 王山荭, 杨丽. 中国春小麦株高、育性近等基因系的建立及应用. 遗传, 1999, 21: 31–33 Liu B H, Wang S H, Yang L. Development and utilization of the isogenic lines of plant height and fertility in wheat cv. Chinese Spring. Hereditas (Beijing), 1999, 21: 31–33 (in Chinese with English abstract) [31]Bomer A, Worland A J, Plaschke J, Schumann E, Law C N. Pleiotropic effects of genes for reduced height (Rht) and day-length insensitivity (Ppd) on yield and its components for wheat grown in middle Europe. Plant Breed, 1993, 111: 204–206 [32]Kertesz Z, Flintham J E, Gale M D. Effects of Rht dwarfing genes on wheat grain yield and its components under eastern European conditions. Cereal Res Commun, 1991, 19: 297–304 [33]Wang Y S, Chen L, Du Y Y, Yang Z Y, Condon A G, Hu Y G. Genetic effect of dwarfing gene Rht13 compared with Rht-D1b on plant height and some agronomic traits in common wheat (Triticum aestivum L.). Field Crops Res, 2014, 162: 39–47 [34]Peng Z S, Li X, Yang Z J, Liao M L. A new reduced height gene found in the tetraploid semi-dwarf wheat landrace Aiganfanmai. Genet Mol Res, 2011, 10: 2349–2357 [35]Peng Z S, Su Z X, Cheng K C. Characterization of dwarfing trait in the tetriploid wheat landrace Aiganfanmai. Wheat Inf Ser, 1999, 89: 7–1 |
[1] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[2] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[3] | ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279. |
[4] | JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227. |
[5] | YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069. |
[6] | HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089. |
[7] | WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868. |
[8] | JIANG Cheng-Gong, SHI Hui-Min, WANG Hong-Wu, LI Kun, HUANG Chang-Ling, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, MA Qing. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize [J]. Acta Agronomica Sinica, 2021, 47(2): 285-293. |
[9] | ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005. |
[10] | TIAN Shi-Ke, QIN Xin-Er, ZHANG Wen-Liang, DONG Xue, DAI Ming-Qiu, YUE Bing. Genetic analysis and characterization of male sterile mutant mi-ms-3 in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 1991-1996. |
[11] | MO Yi,SUN Zhi-Zhong,DING Jia,YU Dong,SUN Xue-Wu,SHENG Xia-Bing,TAN Yan-Ning,YUAN Gui-Long,YUAN Ding-Yang,DUAN Mei-Juan. Genetic analysis and fine mapping of white stripe leaf mutant wsl1 in rice [J]. Acta Agronomica Sinica, 2019, 45(7): 1050-1058. |
[12] | CUI Yue,LU Jian-Nong,SHI Yu-Zhen,YIN Xue-Gui,ZHANG Qi-Hao. Genetic analysis of plant height related traits in Ricinus communis L. with major gene plus polygenes mixed model [J]. Acta Agronomica Sinica, 2019, 45(7): 1111-1118. |
[13] | Pi-Biao SHI,Bing HE,Yue-Yue FEI,Jun WANG,Wei-Yi WANG,Fu-You WEI,Yuan-Da LYU,Min-Feng GU. Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa [J]. Acta Agronomica Sinica, 2019, 45(12): 1841-1850. |
[14] | WANG Xiao-Juan,PAN Zhen-Yuan,LIU Min,LIU Zhong-Xiang,ZHOU Yu-Qian,HE Hai-Jun,QIU Fa-Zhan. Genetic analysis and molecular characterization of a new allelic mutant of silky1 gene in maize [J]. Acta Agronomica Sinica, 2019, 45(11): 1649-1655. |
[15] | Zhong-Xiang LIU,Mei YANG,Peng-Cheng YIN,Yu-Qian ZHOU,Hai-Jun HE,Fa-Zhan QIU. Fine Mapping and Genetic Effect Analysis of a Major QTL qPH3.2 Associated with Plant Height in Maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2018, 44(9): 1357-1366. |
|