Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (09): 1402-1410.doi: 10.3724/SP.J.1006.2016.01402

• RESEARCH NOTES • Previous Articles     Next Articles

Effect of Heat Stress on Spikelet Degeneration and Grain Filling at Panicle Initiation Period of Rice

WANG Ya-Liang**,ZHANG Yu-Ping**,ZHU De-Feng*,XIANG Jing,WU Hui,CHEN Hui-Zhe,ZHANG Yi-Kai   

  1. China National Rice Research Institute / State Key Laboratory of Rice Biology, Hangzhou 310006, China
  • Received:2016-02-18 Revised:2016-06-20 Online:2016-09-12 Published:2016-06-27
  • Contact: 朱德峰, E-mail: cnrice@qq.com, Tel: 13388608096 E-mail:wangyaliang1992@hotmail.com
  • Supported by:

    This study was supported by Special Fund for Agro-Scientific Research in the Public Interest (201203029) and the China Agriculture Research System (CARS-01-09B).


Pot experiment was conducted to investigate the effects of heat stress on rice spikelets degeneration and grain filling at panicle initiation stage. A tolerant (Huanghuazhan) and a susceptible (Fengliangyou 6) cultivars were treated in phytotron with high temperature (10:00–15:00, 40) and normal temperature (10:00–15:00, 32) for one, three, five, seven, and nine days at last leaf emergence stage, with these grown under natural condition as control. The results indicated that the ratio of spikelet degeneration increased greatly with increasing heat-treating time. The ratio of spikelet degeneration of Huanghuazhan increased 45.8% and 62.9% after nine days under high temperature as compared with normal temperature treatment and control, and the ratio of Fengliangyou6 increased 81.7% and 136.1% in the same treatment, showing higher ratio of spikelet degeneration in Fengliangyou6 than Huanghuazhan. The pollen activity significantly decreased after one day under high temperature stress, and anther formation significantly inhibited after five days under high temperature stress. Bad anther formation and poor pollen activity under heat stress resulting in seed-setting rate significantly decreased. Spikelet length and grain filling of two cultivars decreased due to heat stress effect, resulting in a significant reduction of grain weight, with a larger reduction rate in Fengliangyou6 than in Huanghuazhan. Grain filling reduced significantly after five days of high temperature treatment. According to the study, heat stress at last leaf emergence stage may sharply decrease rice yield, and corresponding cultivation measures should be strengthened in production.

Key words: Rice, Heat stress, Spikelet degeneration, Anther formation, Grain filling

[1]李勇, 杨晓光, 叶清, 陈阜. 全球气候变暖对中国种植制度可能影响: IX. 长江中下游地区单双季稻高低温灾害风险及其产量影响. 中国农业科学, 2013, 46: 3997–4006
Li Y, Yang X G, Ye Q, Chen F. The possible effects of global warming on cropping systems in China: IX. The risk of high and low temperature disasters for single and double rice and its impacts on rice yield in the Middle-lower Yangtze plain. Sci Agric Sin, 2013, 46: 3997–4006 (in Chinese with English abstract)
[2]谢晓金, 李秉柏, 王琳, 戴秦如, 申双和. 长江中下游地区高温时空分布及水稻花期的避害对策. 中国农业气象, 2010, 31: 144–150
Xie X J, Li B B, Wang L, Dai Q R, Shen S H. Spatial and temporal distribution of high temperature and strategists rice florescence harm in the lower-middle reaches of Yangtze River. Chin J Agrometeorol, 2010, 31: 144–150 (in Chinese with English abstract)
[3]谢志清, 杜银, 高苹, 曾燕. 江淮流域水稻高温热害灾损变化及应对策略. 气象, 2013, 39: 774–784
Xie Z Q, Du Y, Gao P, Zeng Y. Impact of high-temperature on single cropping rice over Yangtze-Huaihe river valley and response measures. Meteorol Monthly, 2013, 39: 774–784 (in Chinese with English abstract)
[4]IPCC. Climate Change 2013: the Physical Science Basis. Oslo: Inter Government Panel on Climate Change, 2013
[5]Das S, Krishnan P, Nayak M, Ramakrishnan B. High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environ Exp Bot, 2014, 101: 36–46  
[6]Rang Z W, Jagadish S V K, Zhou Q M, Craufurd P Q, Heuer S. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environ Exp Bot, 2011, 70: 58–65
[7]张桂莲, 张顺堂, 肖浪涛, 唐文帮, 肖应辉, 陈立云. 抽穗开花期高温胁迫对水稻花药、花粉粒及柱头生理特性的影响. 中国水稻科学, 2014, 28: 155–166
Zhang G L, Zhang S T, Xiao L T, Tang W B, Xiao Y H, Chen L Y. Effect of high temperature stress on physiological characteristics of anther, pollen and stigma of rice during heading-flowering stage. Chin J Rice Sci, 2014, 28: 155–166 (in Chinese with English abstract)
[8]Shrivastava P R, Saxena P, Xalxo M S, Verulkar S B. Effect of high temperature at different growth stages on rice yield and grain quality traits. J Rice Res, 2012, 5: 29–42 
[9]Prasad P V V, Boote K J, Allen L H. Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric For Meteorol, 2006, 139: 237–251
[10]唐恬, 金荣花, 彭相瑜, 牛若芸. 2013年夏季我国南方区域性高温天气的极端性分析. 气象, 2014, 40: 1207–1215
Tang T, Jin L H, Peng X Y, Niu N Y. Analysis on extremely high temperature over southern china in summer 2013. Meteorol Monthly, 2014, 40: 1207–1215 (in Chinese with English abstract)
[11]邓运, 田小海, 吴晨阳, 松井勤, 肖波. 热害胁迫条件下水稻花药发育异常的早期特征.中国生态农业学报, 2010, 18: 377–383
Deng Y, Tian X H, Wu C Y, Matsu T, Xiao B. Early signs of heat stress-induced abnormal development of anther in rice. Chin J Eco-agric, 2010, 18: 377–383 (in Chinese with English abstract)
[12]曹云英, 段骅, 杨立年, 王志琴, 周少川, 杨建昌. 减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因. 作物学报, 2008, 34: 2134–2142
Cao Y Y, Duan H, Yang L N, Wang Z Q, Zhou S C, Yang J C. Effect of heat-stress meiosis on grain yield of rice cultivars differing in heat-tolerance and its physiological mechanism. Acta Agron Sin, 2008, 34: 2134–2142 (in Chinese with English abstract)
[13]Abiko M, Akibayashi K, Sakata T, Kimura M, Kihara M, Itoh K, Asamizu E, Sato S, Takahashi H, Higashitani A. High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. Sexual Plant Reproduction, 2005, 18: 91–100 
[14]Oshino T, Abiko M, Saito R, Ichiishi E, Endo M, Kawagishi-Kobayashi M, Higashitani A. Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Mol Genet Genomics, 2007, 278: 31–42 
[15]王亚梁, 张玉屏, 曾研华, 武辉, 向镜, 陈惠哲, 张义凯, 朱德峰. 水稻穗分化期高温对颖花分化及退化的影响. 中国农业气象, 2015, 36: 724–731
Wang Y L, Zhang Y P, Zeng Y H, Wu H, Xiang X, Chen H Z, Zhang Y K, Zhu D F. Effect of high temperature stress on rice spikelet differentiation and degeneration during panicle initiation stage. Chin J Agrometeorol, 2015, 36: 724–731 (in Chinese with English abstract)
[16]杨弘远. 水稻生殖生物学. 杭州: 浙江大学出版社, 2005. pp 22–23
Yang H Y. Rice Reproduction Biology. Hangzhou: Zhejiang University Press, 2005. pp 22–23 (in Chinese)
[17]松岛省三著, 庞城译. 稻作理论与技术. 北京: 农业出版社, 1966. pp 75-76
Matsushima S. Theory and Technology of Rice Cultivation. Pang C, Trans. Beijing: Agriculture Press,1966. pp 75–76 (in Chinese)
[18]柳新伟, 孟亚利, 周治国, 曹卫星. 水稻颖花分化与退化的动态特征. 作物学报, 2005, 31: 451–455
Liu X W, Meng Y L, Zhou Z G, Cao W X. Dynamic characteristic of floret differentiation and degeneration in rice. Acta Agron Sin, 2005, 31: 451–455 (in Chinese with English abstract)
[19]杨洪建, 杨连新, 黄建晔, 刘红江, 董桂春, 颜士敏, 朱建国, 王余龙. FACE对武香粳14颖花分化与退化的影响. 作物学报, 2006, 32: 1076–1082
Yang H J, Yang L X, Huang J Y, Liu H J, Dong G C, Yan S M, Zhu J G, Wang Y L. Effect of free-air CO2 enrichment on spikelet differentiation and degeneration of Japonica rice(Oryza sativa L.) cultivar Wuxiangjing 14. Acta Agron Sin, 2006, 32: 1076–1082 (in Chinese with English abstract)
[20]戚华雄, 杜雪树, 李进波. 水稻颖花退化的遗传研究进展. 湖北农业科学, 2014, 53: 5905–5907
Qi H X, Du X S, Li J B. Genetic studies of floret degeneration in rice(Oryza sativa L.). Hubei Agric Sci, 2014, 53: 5905–5097 (in Chinese with English abstract)
[21]魏育明, 郑有良. 内源激素对小麦可育小花数的调控. 四川农业大学学报, 1998, 16: 289–293
Wei Y M, Zheng Y L. The regulation of phytohormone in determination of fertile floret number in wheat. J Sichuan Agric Univ, 1998, 16: 289–293 (in Chinese with English abstract)
[22]杨建昌, 刘凯, 张慎凤, 王学明, 王志琴, 刘立军. 水稻减数分裂期颖花中激素对水分胁迫的响应. 作物学报, 2008, 34: 111–118
Yang J C, Liu K, Zhang S F, Wang X M, Wang Z Q, Liu L J. Hormones in rice spikelets in responses to water stress during meiosis. Acta Agron Sin, 2008, 34: 111–118 (in Chinese with English abstract)
[23]Prasad P V V, Boote K J, Allen L H, Sheehy J E, Thomas J M G. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res, 2006, 95: 398–411
[24]Mohammed A R, Tarpley L. High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agric For Meteorol, 2009, 149: 999–1008
[25]Matsui T, Omasa K, Horie T. High temperature at flowering inhibits swelling of pollen grains, a driving force thecae dehiscence in rice. Plant Prod Sci, 2000, 3: 430–434
[26]霍中洋, 叶全宝, 李华, 张洪程, 戴其根, 许轲. 水稻源库关系研究进展. 中国农学通报, 2002, 18(6): 72–77
Huo Z Y , Ye Q B, Li H, Zhang H C, Dai Q G, Xu K. Advances of research on source-sink relationship of rice. Chin Agric Sci Bull, 2002, 18(6): 72–77 (in Chinese with English abstract)
[27]陈惠哲. 水稻物质运转规律及其产量形成的研究. 中国农业科学院硕士学位论文, 北京, 2007
Chen H Z. Study on Matter Translation Characteristic and Yield Formation in Rice (Oryza sativa L.). MS. Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2007 (in Chinese with English abstract)
[28]张卫星. 超级稻品种穗生长发育和灌浆结实对水分亏缺的响应及其机理. 中国农业科学院博士学位论文, 北京, 2008
Zhang W X. Study on Response of Panicle Growth and Development, Grain Filling under Water Deficit and Its Mechanism in Super Rice (Oryza sativa L.) Varieties. Ph.D. Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2008 (in Chinese with English abstract)
[29]郑建初, 张彬, 陈留根, 杜群, 秦永生, 宋健, 张卫建. 抽穗期高温对水稻产量构成要素和稻米品质的影响及其基因型差异. 江苏农业科学, 2005, 21: 249–254
Zheng J C, Zhang B, Chen L G, Du Q, Qin Y S, Song J, Zhang W J. Genotypic differences in effects of high air temperature in field on rice yield component and grain quality during heading stage. Jiangsu J Agric Sci, 2005, 21: 249–254 (in Chinese with English abstract)
[30]王亚梁, 张玉屏, 朱德峰, 向镜, 陈惠哲, 张义凯. 水稻器官形态和干物质积累对穗分化不同时期高温的响应. 中国水稻科学, 2016, 30: 161-169
Wang Y L, Zhang Y P, Zhu D F, Xiang J, Chen H Z, Zhang Y K. Response of rice organ morphology and dry matter accumulation to high temperature at different panicle initiation stages. Chin J Rice Sci, 2006, 30: 161–169 (in Chinese with English abstract)
[31]上海植物生理研究所人工气候室. 高温对早稻开花结实的影响及其防治: II. 早稻开花期高温对开花结实的影响. 植物学报, 1976, 18: 323–329
Laboratory of Phytotron, Shanghai Institute of Plant Physiology. The influence of high temperature on the flowering and fruiting of high temperature on the flowering and fruiting of early rice and its control: II. The influence of high temperature on the flowering-fruiting of early rice during the flowering stage. Acta Bot Sin, 1976, 18: 323–329 (in Chinese with English abstract)
[32]熊洪, 冉茂林, 徐富贤, 洪松. 南方稻区再生稻研究进展及发展. 作物学报, 2000, 26: 297–304
Xiong H, Ran M L, Xu F X, Hong S. Achievements and developments of rationing rice in south of China. Acta Agron Sin, 2000, 26: 297–304 (in Chinese with English abstract)
[33]张彬, 郑建初, 黄山, 田云录, 彭兰, 卞新民, 张卫建. 抽穗期不同灌水深度下水稻群体与大气的温度差异. 应用生态学报, 2008, 19: 87–92
Zhang B, Zheng J C, Huang S , Tian Y L, Peng L, Bian X M, Zhang W J. Temperature differences of air-rice plant under different irrigated water depths at spiking stage. Chin J Appl Ecol, 2008, 19: 87–92 (in Chinese with English abstract)
[34]张彩霞. 水杨酸减轻水稻高温伤害的机理研究. 中国农业科学院硕士学位论文, 北京, 2015
Zhang C X. The Mechanism of Salicylic Acid in Alleviating Damage on the Rice Induced by Heat Stress. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract)
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[7] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[8] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[9] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[10] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[11] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[12] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[13] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[14] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[15] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
Full text



No Suggested Reading articles found!