Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (10): 1479-1486.doi: 10.3724/SP.J.1006.2016.01479

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Race Distribution of Soybean Cyst Nematode in the Main Soybean Producing Area of Huang-Huai Valleys

LIAN Yun1,??, WANG Jin-She1,??, LI Hai-Chao1, WEI He1, LI Jin-Ying1, WU Yong-Kang1, LEI Chen-Fang1, ZHANG Hui1, WANG Shu-Feng1, GUO Jian-Qiu2, LI Yue-Xia2, LI Zhi-Hui3, JIN Qiao-Ling3, XU Shu-Xia4, ZHANG Zhi-Min4, YANG Cai-Yun5, YU Hui-Yong5, GENG Zhen6, SHU Wen-Tao6, and LU Wei-Guo1,?   

  1. 1 Zhengzhou Subcenter of National Soybean Improvement Center / Key Laboratory of Oil Crops in Huang-Huai Valleys of Ministry of Agriculture / Institute of Industrial Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; 2 Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471023, China; 3 Luohe Academy of Agricultural Sciences, Luohe 462300, China; 4 Anyang Academy of Agricultural Sciences, Anyang 455000, China; 5 Puyang Academy of Agricultural Sciences, Puyang 457000, China; 6 Zhoukou Academy of Agricultural Sciences, Zhoukou 466001, China
  • Received:2016-03-01 Revised:2016-06-20 Online:2016-10-12 Published:2016-07-04
  • Contact: Lu weiguo,E-mail:123bean@163.com E-mail:lianyun262@126.com
  • Supported by:

    ThisstudywassupportedbytheNationalNaturalScienceFoundationofChina(31371652),theSpecialFundforScientificResearchandDevelopmentofHenanAcademyofAgriculturalSciences(20137905),theChinaAgricultureResearchSystem(CARS-004),andtheScienceandTechnologyProjectofHenanProvince(162102110141).

Abstract:

Soybean cyst nematode(SCN)(Heterodera glycines), is the most economically important pathogen of soybean in Huang-Huai Valleys, development of resistant cultivars is the most convenient method to avoid yield losses. Knowledge of SCN race distribution in soybean production area is meaningful for the breeding of resistant lines. A 4-year systematic survey for the presence of soybean cyst nematode Heterodera glycines in Huang-Huai Valleys was initiated in 2012. A distribution map of races was constructed based on Riggs model. The race variation law and reason were also discussed in this article. A total of 322 soil samples infected by soybean cyst nematode were collected. Among them, seven races of H. glycines were identified in 112 (34.8%) samples, including five races described previously. Heterodera glycines presented in the six provinces including Henan, Hebei, Anhui, Shanxi, Shandong, and Jiangsu. Among the 112 soil samples mentioned above, race 2 accounted for 50.9% of the identified H. glycines races. Races 5, 4, 3, 1, 6, and 11 did 23.2%, 9.8%, 5.4%, 4.5%, 4.5%, and 1.8%, respectively. In order of frequency from high to low, races 5, 2, 3, 11 distributed in Henan, with race 5 and race 2 accounting for 87.5% of identified H. glycines populations; races 2, 5, and 6 accounted for 92% in Hebei and 95.2% in Anhui; races 2, 3, 5 did 81.86% in Shandong; races 2, 5, 1 distributed in Jiangsu, with race 2 and race 5 accounting for 84.6%; race 2 and race 4 each accounted for 38.5% of the total identified races in Shanxi soybean productin area. Race 2 was the predominant race in Huang-Huai Valleys at present, which should be focused on developing resistant cultivars, followed by race 5. Race 4, the most virulent form of SCN, whose distribution was centered in Shanxi. In some local area breeding should be focused on cultivars resistant to race 2 and race 5 while in some other areas it should be focused on breeding cultivars resistant to race 2 and race 4, according to the race types identified from the experiment and the distribution in specific areas. Races 3, 6, and 11 were the first reported in Huang-Huai Valleys. Compared with the survey conducted at Huang-Huai Valleys in the years of 2001–2003, there were some changes in the race types and distribution in the present surveys.

Key words: Soybean, SoybeanCystNematode, Huang-HuaiValleys, Race

[1]WratherJA,KoenningSR.EstimatesofdiseaseeffectsonsoybeanyieldsintheUnitedStates2003to2005.JNematol,2006,38:173–180 [2]NiblackTL,TylkaGL,RiggsRD.Nematodepathogensofsoybean.WilcoxJR.Soybeans:Improvement,Production,andUses.Madison,WI,USA:Americansocietyofagronomy,cropsciencesocietyofAmerica,andsoilsciencesocietyofAmerica,2004.pp821–851 [3]NiblackTL,WratherJA,HeinzRD,DonaldPA.DistributionandvirulencephenotypesofHeteroderaglycinesinMissouri.PlantDis,2003,87(8):929–932 [4]WillsonHR,RiedelRM,EisleyJB,YoungCE,JasinskiJR,WheelerTA,KauffmanPH,PiersonPE,StuartMC.DistributionandvirulencephenotypesofHeteroderaglycinesinMissouri.JNematol,1996,28:599–603 [5]MitchumMG,WratherJA,HeinzRD,ShannonJG,DanekasG.VariabilityindistributionandvirulencephenotypesofHeteroderaglycinesinMissouriduring2005.PlantDis,2007,91:1473–1476 [6]何艳琴,闫晓燕,吴存祥,杨中路,年海.中国大豆新品种动态.北京:中国农业科学技术出版社,2013 HeYQ,YanXY,WuCX,YangZL,NianH.ThedynamicofnewsoybeanvarietyinChina.Beijing:ChinaAgriculturalScienceandTechnologyPress,2013 [7]练云,卢为国.大豆抗SCN机制及抗病相关基因研究进展.中国油料作物学报,2013,35:727–732 LianY,LuWG.AdvancesonresistancemechanismandgenetoSCNinsoybean.ChinJOilCropSci,2013,35:727–732(inChinesewithEnglishabstract) [8]卢为国,盖钧镒,李卫东.黄淮地区大豆胞囊线虫(HeteroderaglycinesIchinohe)生理小种的抽样调查与研究.中国农业科学,2006,39:306–312 LuWG,GaiJY,LiWD.Samplingsurveyandidentificationofracesofsoybeancystnematode(HeteroderaglycinesIchinohe)inHuang-HuaiValleys.SciAgricSin,2006,39:306–312(inChinesewithEnglishabstract) [9]张磊.安徽淮北地区大豆胞囊线虫生理小种研究初报.大豆科学,1988,7:251–254 ZhangL.Preliminaryresearchonracesofsoybeancystnematode(HeteroderaglycinesIchinohe)inHuaibeiareaofAnhuiprovince.SoybeanSci,1988,7:251-254 [10]陈品三,张东生,陈森玉.大豆胞囊线虫7号生理小种的研究初报.中国农业科学,1987,20(2):94 ChenPS,ZhangDS,ChenSY.Firstreportonanewphysiologicalrace(race7)ofsoybeancystnematode(Heteroderaglycines).SciAgricSin,1987,20(2):94 [11]刘汉起,商邵刚,甄鸿杰,霍虹,吴和礼,姚振纯,李秀兰.大豆胞囊线虫生理小种研究初报.大豆科学,1985,4:131–136 LiuHQ,ShangSG,ZhenHJ,HuoH,WuHL,YaoZC,LiXL.Studyonphysiologicalracesofsoybeancystnematode(Heteroderaglycines).SoybeanSci,1985,4:131–136(inChinesewithEnglishabstract) [12]李卫东,贺春林,田保明.河南省大豆胞囊线虫分布及生理小种鉴定.华北农学报,1991,6(增刊1):111–114 LiWD,HeCL,TianBM.Samplingsurveyandidentificationofracesofsoybeancystnematode(HeteroderaglycinesIchinohe)intheprovinceofHenan.ActaAgricBoreali-Sin,1991,6(S1):111–114 [13]邢邯,赵经荣,战明奎,李佩廷,盖钧镒.山东省大豆胞囊线虫生理小种的鉴定.中国油料作物学报,1997,19(4):61–65 XingH,ZhaoJR,ZhanMK,LiPT,GaiJY.Identificationofracesofsoybeancystnematode(HeteroderaglycinesIchinohe)fromShandongprovince.OilCropsChina,1997,19(4):61–65(inChinesewithEnglishabstract) [14]李莹,王志,焦广音,常汝镇.中国大豆遗传资源对大豆胞囊线虫4号生理小种的抗性鉴定研究.中国农业科学,1991,24(5):64–69 LiY,WangZ,JiaoGY,ChangRZ.Studiesonresistanceofsoybeangermplasmresourcestorace4ofsoybeancystnematode.SciAgricSin,1991,24(5):64–69(inChinesewithEnglishabstract) [15]王衍桐,彭德良,陈受宜.灰布支黑豆对大豆孢囊线虫(Heteroderaglycines)14号小种的抗性遗传.遗传学报,2000,27:146–150 WangYT,PengDL,ChenSY.InheritanceofresistancetoHeteroderaglycinesrace14inHuibuzhiblackbean.ActaGenetSin,2000,27:146–150(inChinesewithEnglishabstract) [16]RiggsRD,SchmittDP.CompletecharacterizationoftheraceschemeforHeteroderaglycines.JNemato,1988,20:392–395 [17]练云,魏荷,王金社,雷晨芳,李海朝,武永康,卢为国.影响大豆胞囊线虫生理小种鉴定因素探讨.分子植物育种,2015,13:1259–1264 LianY,WeiH,WangJS,LeiCF,LiHC,WuYK,LuWG.Astudyonthefactorsthatinfluencetherace-identificationofsoybeancystnematode.MolPlantBreed,2015,13:1259–1264(inChinesewithEnglishabstract) [18]王金社,卢为国,李金英,练云,魏荷,李海朝,雷晨芳.植物病虫害表型数据采集系统.专利号:2014SR060158,中国,2014 WangJS,LuWG,LiJY,LianY,WeiH,LiHC,LeiCF.Thedataacquisitionsystemonthephenotypeofplantdiseasesandinsectpests.Patentnumber:2014SR060158,China,2014 [19]TeamRC.R:Alanguageandenvironmentforstatisticalcomputing.RFoundStatistComput,2014 [20]NiblackTL,ArelliPR,NoelGR,OppermanCH,OrfJH,SchmittDP,ShannonJG,TylkaGL.ArevisedclassificationschemeforgeneticallydiversepopulationsofHeteroderaglycines.JNematol,2002,34:279–288 [21]AfzalAJ,SrourA,SainiN,HemmatiN,ElShemyHA,LightfootDA.RecombinationsuppressionatthedominantRhg1/Rfs2locusunderlyingsoybeanresistancetothecystnematode.TAG,2011,124:1027–1039 [22]YuanCP,LiYH,LiuZX,GuanRX,ChangRZ,QiuLJ.DNAsequencepolymorphismoftheRhg4candidategeneconferringresistancetosoybeancystnematodeinChinesedomesticatedandwildsoybeans.MolBreed,2012,30:1155–1162 [23]GloverKD,WangD,ArelliPR,CarlsonSR,CianzioSR,DiersBW.NearisogeniclinesconfirmasoybeancystnematoderesistancegeneromPI88788onlinkagegroup.JCropSci,2004,44:936–941 [24]VuongTD,SleperDA,ShannonJG,NguyenHT.Novelquantitativetraitlociforbroad-basedresistancetosoybeancystnematode(HeteroderaglycinesIchinohe)insoybeanPI567516C.ThoerApplGenet,2010,121:1253–1266 [25]LiuX,LiuS,JamaiA,BendahmaneA,LightfootDA,MitchumMG,MeksemK.SoybeancystnematoderesistanceinsoybeanisindependentoftheRhg4locusLRR-RLKgene.FunctIntegrGenomics,2011,11:539–549 [26]卢为国,盖钧镒,郑永战,李卫东.大豆遗传图谱的构建和抗胞囊线虫(HeteroderaglycinesIchinohe)的QTL分析.作物学报,2006,32:1272–1279 LuWG,GaiJY,ZhengYZ,LiWD.ConstructionofasoybeangeneticlinkagemapandmappingQTLsresistanttosoybeancystnematode(HeteroderaglycinesIchinohe).ActaAgronSin,2006,32:1272–1279(inChinesewithEnglishabstract) [27]ConcibidoVC,DiersBW,ArelliPR.AdecadeofQTLmappingforcystnematoderesistanceinsoybean.CropSci,2004,44:1121–1131 [28]AfzalAJ,NatarajanA,SainiN,IqbalMJ,GeislerM,ElShemyHA,MungurR,WillmitzerL,LightfootDA.Thenematoderesistancealleleattherhg1locusalterstheproteomeandprimarymetabolismofsoybeanroots.PlantPhysiol,2009,151:1264–1280

[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[5] ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168.
[6] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[7] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[8] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[9] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[10] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[11] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[12] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[13] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[14] RUAN Jun-Mei, ZHANG Jun, LIU You-Hong, DONG Wen-Jun, MENG Ying, DENG Ai-Xing, YANG Wan-Shen, SONG Zhen-Wei, ZHANG Wei-Jian. Effects of free air temperature increase on nitrogen utilization of rice in northeastern China [J]. Acta Agronomica Sinica, 2022, 48(1): 193-202.
[15] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!