Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (10): 1487-1494.doi: 10.3724/SP.J.1006.2016.01487

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Global Transcriptome Analysis in High- and Low-Nitrogen Responsive Inbred Lines of Maize

GE Min, LYU Yuan-Da, ZHANG Ti-Fu, ZHOU Ling, LIN Feng, and ZHAO Han*   

  1. Institute of Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2016-02-22 Revised:2016-06-20 Online:2016-10-12 Published:2016-07-28
  • Contact: Zhao Han,E-mail:zhaohan@jaas.ac.cn E-mail:gemin8614@163.com
  • Supported by:

    ThisworkwassupportedbygrantfromtheNaturalScienceFoundationofChina(31271728)andJiangsuAgricultureScienceandTechnologyInnovationFund[CX(14)2009].

Abstract:

Different maize genotypes have exhibited their variations in nitrogen responsiveness, however, the corresponding gene expression patterns are unexplored yet. Here, we performed a comprehensive transcriptome profiling of high- and low-nitrogen responsiveness genotypes in the conditions of sufficient and limiting nitrogen (SN and LN) supplies. Under LN supply, B73, a high nitrogen responsive genotype, accumulated a much lower nitrogen content than under SN condition in the leaf. Meanwhile, the N content of Mo17 didn’t show a significant difference between two treatments. Furthermore, RNAseq revealed that 13 867 and 10 028 genes were significantly differentially expressed in Mo17 and B73 with the treatments, with 9044, 4233 up-regulated and 4823, 5795 down-regulated under N limitation. Showing that, in LN supply, Mo17 had more expressed genes and higher expression variations than B73. A total of 342 differentially expressed genes with a significant interaction genotype by nitrogen were detected, which could be clustered into four groups. The functional annotations of genes demonstrated that these genes were mainly involved in amino acid metabolism, photosynthesis and biosynthesis of secondary metabolites, suggesting these genes may have their roles in modulating maize nitrogen use efficiency. The study promotes a better understanding of the mechanisms on maize nitrogen response, and provides candidate genes for breeding of crop nitrogen use efficiency in the future.

Key words: Maize, Nitrogen, Nitrogenstress, Transcriptomeprofiling, Nitrogenuseefficiency(NUE)

[1]GutierrezRA.Systemsbiologyforenhancedplantnitrogennutrition.Science,2012,336:1673–1675 [2]MarchiveC,RoudierF,CastaingsL,BrehautV,BlondetE,ColotV,MeyerC,KrappA.NuclearretentionofthetranscriptionfactorNLP7orchestratestheearlyresponsetonitrateinplants.NatCommun,2013,4:1713 [3]BiYM,MeyerA,DownsGS,ShiX,El-KereamyA,LukensL,RothsteinSJ.HighthroughputRNAsequencingofahybridmaizeanditsparentsshowsdifferentmechanismsresponsivetonitrogenlimitation.BMCGenomics,2014,15:77 [4]HumbertS,SubediS,CohnJ,ZengB,BiYM,ChenX,ZhuT,McNicholasPD,RothsteinSJ.Genome-wideexpressionprofilingofmaizeinresponsetoindividualandcombinedwaterandnitrogenstresses.BMCGenomics,2013,14:3 [5]HvistendahlM.China'spushtoaddbysubtractingfertilizer.Science,2010,327:801 [6]MollR,KamprathE,JacksonW.Analysisandinterpretationoffactorswhichcontributetoefficiencytonitrogenutilization.AgronJ,1982,74:562–564 [7]YamayaT,ObaraM,NakajimaH,SasakiS,HayakawaT,SatoT.Geneticmanipulationandquantitativetraitlocimappingfornitrogenrecyclinginrice.JExpBot,2002,53:917–925 [8]ObaraM,SatoT,SasakiS,KashibaK,NaganoA,NakamuraI,EbitaniT,YanoM,YamayaT.IdentificationandcharacterizationofaQTLonchromosome2forcytosolicglutaminesynthetasecontentandpaniclenumberinrice.TheorApplGenet,2004,110:1–11 [9]ObaraM,TamuraW,EbitaniT,YanoM,SatoT,YamayaT.Fine-mappingofqRL6.1,amajorQTLforrootlengthofriceseedlingsgrownunderawiderangeofNH4+concentrationsinhydroponicconditions.TheorApplGenet,2010,121:535–547 [10]SunH,QianQ,WuK,LuoJ,WangS,ZhangC,MaY,LiuQ,HuangX,YuanQ,HanR,ZhaoM,DongG,GuoL,ZhuX,GouZ,WangW,WuY,LinH,FuX.HeterotrimericGproteinsregulatenitrogen-useefficiencyinrice.NatGenet,2014,46:652–656 [11]HuangX,QianQ,LiuZ,SunH,HeS,LuoD,XiaG,ChuC,LiJ,FuX.NaturalvariationattheDEP1locusenhancesgrainyieldinrice.NatGenet,2009,41:494–497 [12]AgramaHA,MoussaME,NaserME,TarekMA,IbrahimAH.MappingofQTLfordownymildewresistanceinmaize.TheorApplGenet,1999,99:519–523 [13]CoqueM,GallaisA.Genomicregionsinvolvedinresponsetograinyieldselectionathighandlownitrogenfertilizationinmaize.TheorApplGenet,2006,112:1205–1220 [14]CoqueM,MartinA,VeyrierasJB,HirelB,GallaisA.GeneticvariationforN-remobilizationandpostsilkingN-uptakeinasetofmaizerecombinantinbredlines.3.QTLdetectionandcoincidences.TheorApplGenet,2008,117:729–747 [15]米国华,陈范骏,春亮,郭亚芬,田秋英,张福锁.玉米氮高效品种的生物学特征.植物营养与肥料学报,2007,13:155–159 MiGH,ChenFJ,ChuaL,GouYF,TianQY,ZhangFS.Biologicalcharacteristicsofnitrogenefficientmaizegenotypes.PlantNutrFertSci,2007,13:155–159(inChinesewithEnglishabstract) [16]ChenQY,LiuZP,WangBB,WangXF,LaiJS,TianF.Transcriptomesequencingrevealstherolesoftranscriptionfactorsinmodulatinggenotypebynitrogeninteractioninmaize.PlantCellRep,2015,34:1761–1771 [17]GelliM,DuoYC,KondaAR,ZhangC,HoldingD,DweikatI.Identificationofdifferentiallyexpressedgenesbetweensorghumgenotypeswithcontrastingnitrogenstresstolerancebygenome-widetranscriptionalprofiling.BMCGenomics,2014,15:179 [18]SchlüterU,MascherM,ColmseeC,ScholzU,Br?utigamA,FahnenstichH,SonnewaldU.Maizesourceleafadaptationtonitrogendeficiencyaffectsnotonlynitrogenandcarbonmetabolismbutalsocontrolofphosphatehomeostasis.PlantPhysiol,2012,160:1384–1406. [19]葛敏,吕远大,李坦,张体付,张晓林,赵涵.玉米Dof转录因子家族的全基因组鉴定与分析.中国农业科学,2014,47:4563–4572 GeM,LüYD,LiT,ZhangTF,ZhangXL,ZhaoH.Genome-wideidentificationandanalysisofDoftranscriptionfactorfamilyinmaize.SciAgricSin,2014,47:4563–4572(inChinesewithEnglishabstract) [20]PattersonN,PriceA,ReichD.Populationstructureandeigenanalysis.PLoSGenet,2006,2(12):e190 [21]WidiezT,ElKafafielS,GirinT,BerrA,RuffelS,KroukG,VayssièresA,ShenWH,CoruzziGM,GojonA,LepetitM.Highnitrogeninsensitive9(HNI9)-mediatedsystemicrepressionofrootNO3-uptakeisassociatedwithchangesinhistonemethylation.ProcNatlAcadSciUSA,2011,108:13329–13334 [22]XieC,MaoX,HuangJ,DingY,WuJ,DongS,KongL,GaoG,LiCY,WeiL.KOBAS2.0:awebserverforannotationandidentificationofenrichedpathwaysanddiseases.NuclAcidsRes,2011,39:W316–W322 [23]YangXS,WuJ,ZieglerTE,YangX,ZayedA,RajaniMS,ZhouD,BasraAS,SchachtmanDP,PengM,ArmstrongCL,CaldoRA,MorrellJA,LacyM,StaubJM.Geneexpressionbiomarkersprovidesensitiveindicatorsofinplantanitrogenstatusinmaize.PlantPhysiol,2011,157:1841–1852 [24]LiuKH,HuangCY,TsayYF.CHL1isadual-affinitynitratetransporterofArabidopsisinvolvedinmultiplephasesofnitrateuptake.PlantCell,1999,11:865–874 [25]MartinA,LeeJ,KicheyT,GerentesD,ZivyM,TatoutC,DuboisF,BalliauT,ValotB,DavantureM,Terce-LaforgueT,QuillereI,CoqueM,GallaisA,Gonzalez-MoroMB,BethencourtL,HabashDZ,LeaPJ,CharcossetA,PerezP,MurigneuxA,SakakibaraH,EdwardsKJ,HirelB.Twocytosolicglutaminesynthetaseisoformsofmaizearespecificallyinvolvedinthecontrolofgrainproduction.PlantCell,2006,18:3252–3274 [26]BrauerEK,RochonA,BiYM,BozzoGG,RothsteinSJ,ShelpBJ.Reappraisalofnitrogenuseefficiencyinriceoverexpressingglutaminesynthetase1.PhysiolPlant,2011,141:361–372 [27]CastaingsL,CamargoA,PocholleD,GaudonV,TexierY,Boutet-MerceyS,TaconnatL,RenouJP,Daniel-VedeleF,FernandezE,MeyerC,KrappA.Thenoduleinception-likeprotein7modulatesnitratesensingandmetabolisminArabidopsis.PlantJ,2009,57:426–435 [28]ChardinC,GirinT,RoudierF,MeyerC,KrappA.TheplantRWP-RKtranscriptionfactors:keyregulatorsofnitrogenresponsesandofgametophytedevelopment.JExpBot,2014,65:5577–5587

[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[4] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[5] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[6] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[7] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[8] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[9] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[10] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[11] LI Xin-Ge, GAO Yang, LIU Xiao-Jun, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, CAO Qiang. Effects of sowing dates, sowing rates, and nitrogen rates on growth and spectral indices in winter wheat [J]. Acta Agronomica Sinica, 2022, 48(4): 975-987.
[12] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[13] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[14] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[15] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!