Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (11): 1592-1600.doi: 10.3724/SP.J.1006.2016.01592

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Mapping for Ear Architectural Traits under Three Plant Densities in Maize

WANG Hui,LIANG Qian-Jin,HU Xiao-Jiao,LI Kun,HUANG Chang-Ling,WANG Qi,HE Wen-Zhao,WANG Hong-Wu*,LIU Zhi-Fang*   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China?
  • Received:2016-03-03 Revised:2016-06-20 Online:2016-11-12 Published:2016-07-04
  • Contact: Liu Zhifang,E-mail: liuzhifang@caas.cn; Wang hongwu,E-mail: wanghongwu@caas.cn E-mail:1300272654@qq.com
  • Supported by:

    This study was supported by the China National 973 Project (2014CB138200), Program of Beijing Municipal Science and Technology (D141100005014003), and Agricultural Science and Technology Innovation Program (ASTIP) of CAAS.

Abstract:

To identify genetic factors of ear architectural traits response to plant density, we developed a recombination inbred line (RIL) mapping population with 220 families from a cross between two maize inbred lines, Zheng 58 and HD568. The filed experiments were performed in 2014 and 2015 seasons of Beijing and Hainan. The ear architectural traits including ear length, ear diameter, ear row number and kernel number per row were evaluated under three plant densities in each environment. With the BLUP value estimated by SAS software, QTLs for ear architectural traits were detected by inclusive composite interval mapping (ICIM) using Windows QTL ICI-Mapping software. In total, 42 QTLs were detected under three plant densities, each QTL explained phenotypic variation ranging from 4.20% to 14.07%. One QTL related to ear row number on chromosome 2 was repeatedly detected under three plant densities. Four QTLs related to ear diameter, ear row number and kernel number per row were commonly detected under two plant densities, among them an ear row number QTL was located on chromosome 4 with explained 10.88% and 14.07% of phenotypic variance under plant density of 52 500 plants ha-1 and 67 500 plants ha-1. In addition, we found three QTLs for different ear architectural traits on chromosomes 2, 4 and 9 simultaneously. This study revealed the genetic mechanisms of ear architectural traits changed under different plant densities. The QTLs stably expressed under different plant densities can be applied in fine mapping and marker assisted selection in density tolerance breeding of maize.

Key words: Maize, Ear architectural traits, Plant density, QTL, BLUP

[1]Ku L X, Zhao W M, Zhang J, Wu L C, Wang C L, Wang P A, Zhang W Q, Chen Y H. Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor Appl Genet, 2010, 121: 951–959 [2]Yan J B, Tang H, Huang Y Q, Zheng Y L, Li J S. Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica, 2006, 149: 121–131 [3]Li C, Li Y, Sun B, Peng B, Liu C, Liu Z Z, Yang Z Z, Li Q C, Tan W W, Zhang Y, Wang D, Shi Y S, Song Y C, Wang T Y, Li Y. Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica, 2013, 19: 303–316 [4]Nikoli? A, An?elkovi? V, Dodig D, Drini? S M, Kravi? N, Mici?-Ignjatovi? D. Identification of QTLs for drought tolerance in maize: II. yield and yield components. Genetika, 2013, 45: 341–350 [5]Liu L, Du Y F, Huo D A, Wang M, Shen X M, Yue B, Qiu F Z, Zheng Y L, Yan J B, Zhang Z X. Genetic architecture of maize kernel row number and whole genome prediction. Theor Appl Genet, 2015, 128: 2243–2254 [6]Zhang Z H, Wu X Y, Shi C N, Wang R N, Li S F, Wang Z H, Liu Z H, Xue Y D, Tang G L, Tang J H. Genetic dissection of the maize kernel development process via conditional QTL mapping for three developing kernel-related traits in an immortalized F2 population. Mol General Genet, 2015, 291: 437–454 [7]Peter B, Namiko S N, David J. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet, 2013, 45: 334–337 [8]Liu L, Du Y F, Shen X M, Li M F, Sun W, Huang J, Liu Z J, Tao Y S, Zheng Y L, Yan J B, Zhang Z X. KRN4 controls quantitative variation in maize kernel row number. Plos Genet, 2015, 11(11): e1005670 [9]Guo J, Su G, Zhang J, Wang G. Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi-arid land condition. Afr J Biotechnol, 2008, 7: 1829–1838 [10]Ribaut J M, Jiang C, Gonzalez-De-Leon D, Edmeades G O, Hoisington D A. Identification of quantitative trait loci under drought conditions in tropical maize. 2. yield components and marker-assisted selection strategies. Theor Appl Genet, 1997, 94: 887–896 [11]Gonzalo M, Holland J B, Vyn T J, Mclntyre L M. Direct mapping of density response in a population of B73 × Mo17 recombinant inbred lines of maize (Zea mays L.). Heredity, 2010, 104: 583–599 [12]Guo J, Chen Z, Liu Z, Wang B B, Song W B, Li W, Chen J, Dai J R, Lai J S. Identification of genetic factors affecting plant density response through QTL mapping of yield component traits in maize (Zea mays L.). Euphytica, 2011, 182: 409–422 [13]刘小刚. 玉米茎秆强度QTL定位研究. 中国农业科学院硕士学位论文, 北京, 2014 Liu X G. Quantitative Trait Locus Analysis of Stalk Strength in Maize. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2014 (in Chinese with English abstract) [14]马飞前. 玉米茎秆纤维性状QTL定位. 中国农业科学院硕士学位论文, 北京, 2014 Ma F Q. Mapping of Quantitative Trait Loci (QTL) for Stalk Fiber Traits in Maize. MS Thesis of Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2014 (in Chinese with English abstract) [15]Ganal M W, Gregor D, Andreas P, Aurélie B, Buckler E S, Alain C, Clarke J D, Graner E M, Hansen M, Joets J, Paslier M-C L, McMullen M D, Montalent P, Rose M, Sch?n C C, Sun Q, Walter H, Martin O C, Matthieu F. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. Plos One, 2011, 6(12): e28334 [16]Van Ooijen J: JoinMap4.software for the Calculation of Genetic Linkage Maps in Experimental Populations. Kyazma B V, Wageningen, Netherlands, 2006. p 56 [17]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A R, Bender D, Maller J, Sklar P, Bakker P I W, Daly M J, Sham P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Human Genet, 2007, 81: 559–575 [18]Wang J K. QTL IciMapping: Integrated Software for Building Linkage Maps and Mapping Quantitative Trait Genes. International Plant and Animal Genome Conference XXI 2013. Scherago International, San Diego, CA, 2013 [19]Kosambi D D. The estimation of map distance from recombination valves. Annu Eugenia, 1994, 12: 172–175 [20]Knapp S, Stroup W, Ross W. Exact confidence intervals for heritability on a progeny mean basis1. Crop Sci, 1985, 25: 192–194 [21]Piepho H P, M?hring J, Melchinger A E, Büchse A. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica, 2008, 161: 209–228 [22]王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35: 239–245 Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009, 35: 239–245 (in Chinese with English abstract) [23]Cai L, Li K, Yang X, Li J. Identification of large-effect QTL for kernel row number has potential for maize yield improvement. Mol Breed, 2014, 34: 1087–1096 [24]Yang C, Liu J, Rong T Z. Detection of quantitative trait loci for ear row number in F2 populations of maize. Genet Mol Res, 2015, 14: 14229–14238 [25]Li K, Yan J, Li J, Yang X. Genetic architecture of rind penetrometer resistance in two maize recombinant inbred line populations. BMC Plant Biol, 2014, 14: 152 [26]秦伟伟, 李永祥, 李春辉, 陈林, 吴迅, 白娜, 石云素, 宋燕春, 张登峰, 王天宇, 黎裕. 基于高密度遗传图谱的玉米籽粒性状QTL定位. 作物学报, 2015, 41: 1510–1518 Qin W W, Li Y X , Li C H, Chen L, Wu X, Bai N, Shi Y S, Song Y C, Zhang D F, Wang T Y, Li Y. QTL mapping for kernel related traits based on a high-density genetic map. Acta Agron Sin, 2015, 41: 1510–1518 (in Chinese with English abstract) [27]吕学高, 蔡一林, 陈天青, 徐德林, 王伟林, 刘志斋, 王久光. 玉米穗部性状QTL定位. 西南大学学报: 自然科学版, 2008, 30(2): 64–70 Lü X G, Cai Y L, Chen T Q, Xu D L, Wang W L, Liu Z Z, Wang J G. QTL mapping for ear traits in maize (Zea mays L.). J Southwest Univ (Nat Sci Edn), 2008, 30(2): 64–70 (in Chinese with English abstract) [28]Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: I. Grain yield and yield components. Crop Sci, 1996, 36: 1310–1319 [29]兰进好, 李新海, 高树仁, 张宝石, 张世煌. 不同生态环境下玉米产量性状QTL分析. 作物学报, 2005, 31: 1253–1259 Lan J H, Li X H, Gao S R, Zhang B S, Zhang S H. QTL analysis of yield components in maize under different environments. Acta Agron Sin, 2005, 31: 1253–1259 (in Chinese with English abstract) [30]Brown P J, Upadyayula N, Mahone G S, Tian F, Bradbury P J, Myles S, Holland J B, Flint-Garcia S, McMullen M D, Buckler E S, Rocheford T R. Distinct genetic architectures for male and female inflorescence traits of maize. PloS Genet, 2011, 7: 1276–1280 [31]Würschum T. Mapping QTL for agronomic traits in breeding population. Theor Appl Genet, 2012, 125: 201–210 [32]Cai L C, Li K, Yang X H, Li J S. Identification of large-effect QTL for kernel row number has potential for maize yield improvement. Mol Breed, 2014, 34: 1087–1096 [33]Tuberosa R, Salvi S, Sanguineti M C, Landi P, Maccaferri M, Conti S. Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot, 2002, 89: 941–963 [34]Zhuang J Y, Lin H X, Lu J, Qian H R, Hittalmani S, Huang N, Zheng K L. Analysis of QTL environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95: 799–808 [35]Chen J, Zhu J. Genetic effects and genotype × environment interactions for cooking quality traits in Indica-japonica crosses of rice (Oryza sativa L.). Euphytica, 1999, 109: 9–15 [36]Shi C H, He C X, Zhu J, Chen J G. Analysis of genetic effects and genotype × environment interaction effects for apparent quality traits of indica rice. Chin J Rice Sci, 1999, 13: 179–182 (in English with Chinese abstract) [37]Huang N, Angeles E R, Domingo J, Magpantay S, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush G S. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet, 1997, 95: 313–320 [38]Tanksley S D, Ahn N, Causse M, Coffman R, Fulton T, McCouch S R, Second G, Tai T, Wang Z, Wu K, Yu Z. RFLP mapping of the rice genome. In: Rice Genetics II. Los Banos, Laguna: IRRI, 1991. pp 435–442

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[3] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[4] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[5] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[6] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[7] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[8] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[9] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[10] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[11] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[12] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[13] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[14] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[15] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!