Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (07): 1087-1095.doi: 10.3724/SP.J.1006.2017.01087

• RESEARCH NOTES • Previous Articles     Next Articles

QTL Mapping for Spike Traits of Wheat Using 90k Chip Technology

WU Bing-Jin,JIAN Jun-Tao,ZHANG De-Qiang,MA Wen-Jie,FENG Jie,CUI Zi-Xia,ZHANG Chuan-Liang,SUN Dao-Jie*   

  1. College of Agronomy, Northwest A&F University, Yangling 712100, China
  • Received:2016-09-11 Revised:2017-03-01 Online:2017-07-12 Published:2017-04-06
  • Contact: Sun Daojie, E-mail: chinawheat@hotmail.com E-mail:wbj2010@163.com
  • Supported by:

    This study was supported by the National Key Basic Research Program of China (2014CB138100), the Natural Science Foundation of Shaanxi Province (2015JM3094), and the Key Scientific and Technological Innovation Team of Shaanxi Province (2014KCT-25).


Spike traits are important to grain yield in wheat. Molecular markers associated with genes/QTLs controlling spike traits are highly valuable to marker-assisted breeding. A recombinant inbred line (F8) population derived from Zhou 8425B ? Xiaoyan 81 were evaluated in three environments, and QTLs for spike length, spikelet number per spike, sterile spikelet number, grain number per spike and thousand-grain weigh were mapped into a high-density genetic map built by 90k chip. A total of 71 QTLs were located on 19 chromosomes, and the phenotype variation explained (PVE) by a single locus ranged from 2.10% to 45.25%. Thirty-seven loci were considered as main-effect QTLs owing to the PVE larger than 10%. QTLs QSl.nafu-6A.2 for spike length, QSl.nafu-7A for spike length, QSsn.nafu-2A.1 for sterile spikelet number, QSsn.nafu-2D for sterile spikelet number and QGns.nafu-2B for grain number per spike were identified repeatedly in different environments with the LOD value higher than 10 and PVE larger than 20%. QSl.nafu-6A.2 for spike length, QGns.nafu-6A for grain number per spike and QTgw.nafu-6A for thousand-grain weight were mapped in a cluster on chromosome 6A and might be applicable in marker-assisted selection because they have been detected in multiple environments and close to the loci reported.

Key words: Triticum aestivum, Spike-related traits, 90k gene chip, QTL mapping

[1] Huang X Q, Kempf H, Canal M W, Roder M S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 933–943 [2] Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F, Kong Z X, Tian D G, Luo Q Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics, 2007, 277: 31–42 [3] Deng S, Wu X, Wu Y, Zhou R., Wang H, Jia J, Liu S. Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theor Appl Genet, 2011, 122: 281–289 [4] Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet, 2014, 127: 659–675 [5] Cui F, Ding A M, Li J, Zhao C H, Wang L, Wang X Q, Qi X L, Li X F, Li G Y, Gao J R, Wang H G. QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica, 2012, 186: 177–192 [6] 卢翔, 张锦鹏, 王化俊, 杨欣明, 李秀全, 李立会. 小麦-冰草衍生后代3558-2穗部相关性状的遗传分析和QTL定位. 植物遗传资源学报, 2011, 12: 86–91 Lu X, Zhang J P, Wang H J, Yang X M, Li X Q, Li L H. Genetic analysis and QTL mapping of wheat spike traits in a derivative line 3558-2 from wheat × Agropyron cristatum offspring. Plant Genet Resour, 2011, 12: 86–91 (in Chinese with English abstract) [7] Wang J, Liu W, Wang H, Li H, Wu J, Yang X, Li X, Gao A. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica, 2011, 177: 277–292 [8] Li S, Jia J, Wei X, Zhang X, Li L, Chen H, Fan Y, Sun H, Zhao X, Lei T, Xu Y, Jiang F, Wang H, Li L. An intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed, 2007, 20: 167–178 [9] Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J; International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J, 2014, 12: 787–796 [10] 李立会. 小麦种植资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 8–45 Li L H. Descriptors and Data Standard for Wheat (Triticunm aestivum L.). Beijing: Chinese Agricultural Science and Technology Press, 2006. pp 8–45 (in Chinese) [11] 王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35: 239–245 Wang J K. Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009, 35: 239–245 (in Chinese with English abstract) [12] You G X, Zhang X Y, Wang L F. An estimation of the minimum number of SSR loci needed to reveal genetic relationships in wheat varieties: information from 96 random accessions with maximized genetic diversity. Mol Breed, 2004, 14: 397–406 [13] Alamerew S, Chebotar S, Huang X, R?der M, B?rner A. Genetic diversity in Ethiopian hexaploid and tetraploid wheat germplasm assessed by microsatellite markers. Genet Resour Crop Evol, 2004, 51: 559–567 [14] 郝晨阳, 王兰芬, 张学勇, 游光霞, 董玉琛, 贾继增, 刘旭, 尚励武, 刘三才, 曹永生. 我国育成小麦品种的遗传多样性演变. 中国科学: 生命科学, 2005, 35: 408–415 Hao C Y, Wang L F, Zhang X Y, You G X, Dong Y C, Jia J Z, Liu X, Shang L W, Liu S C, Cao Y S. Changes of genetic diversity of wheat varieties released in China. Sci China: Life Sci, 2005, 35: 408–415 (in Chinese with English abstract) [15] Roussel V, Koenig J, Beckert M, Balfourier F. Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet, 2004, 108: 920–930 [16] 贾继增, 张正斌. 小麦21条染色体RFLP作图位点遗传多样性分析. 中国科学: 生命科学, 2001, 31: 13–21 Jia J Z, Zhang Z B. Genetic diversity analysis of 21 chromosomes of wheat with RFLP marker. Sci China: Life Sci, 2001, 31: 13–21 [17] Jia J, Zhao S, Kong X. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496: 91–95 [18] 吴秋红, 陈娇娇, 陈永兴, 周升辉, 傅琳, 张德云, 肖尧, 王国鑫, 王振忠, 王立新, 韩俊, 袁成国, 尤明山, 刘志勇. 燕大1817/北农6号重组自交系群体穗部性状的QTL定位. 作物学报, 2015, 41: 349–358 Wu Q H, Chen J J, Chen Y X, Zhou S H, Fu L, Zhang D Y, Xiao Y, Wang G X, Wang Z Z, Wang L X, Han J, Yuan C G, You M S, Liu Z Y. Mapping quantitative trait loci related to spike traits using a RILs population of Yanda 1817 × Beinong 6 in wheat (Triticum aestivum L.). Acta Agron Sin, 2015, 41: 349–358 (in Chinese with English abstract) [19] 高尚, 莫洪君, 石浩然, 王智强, 林宇, 武方琨, 邓梅, 刘亚西, 魏育明, 郑有良. 利用SNP基因芯片技术进行小麦遗传图谱构建及重要农艺性状QTL分析. 应用与环境生物学报, 2016, 22: 85–94 Gao S, Mo H J, Shi H R, Wang Z Q, Lin Y, Wu F K, Deng M, Liu Y X, Wei Y M, Zheng Y L. Construction of wheat genetic map and QTL analysis of main agronomic traits using SNP genotyping chips technology. Chin J Appl Environ Biol, 2016, 22: 85–94 (in Chinese with English abstract) [20] Li C, Bai G, Carver B F, Chao S. Wang Z. Mapping quantitative trait loci for plant adaptation and morphology traits in wheat using single nucleotide polymorphisms. Euphytica, 2016, 208: 299–312 [21] 刘凯, 邓志英, 李青芳, 张莹, 孙彩铃, 田纪春, 陈建省. 利用高密度SNP遗传图谱定位小麦穗部性状基因. 作物学报, 2016, 42: 820–831 Liu K, Deng Z Y, Li Q F, Zhang Y, Sun C L, Tian J C, Chen J S. Mapping QTLs for wheat panicle traits with high density SNP genetic map. Acta Agron Sin, 2016, 42: 820–831 (in Chinese with English abstract) [22] Cui F, Ding A M, Li J, Zhao C H, Wang L, Wang X Q, Qi X L, Li X F, Li G Y, Gao J R, Wang H G. QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica, 2012, 186: 177–192 [23] Li C, Bai G, Carver B F. Single nucleotide polymorphism markers linked to QTL for wheat yield traits. Euphytica, 2015, 206: 1–13 [24] Kato K, Miura H, Sawada S. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet, 2000, 10l: 1114–112l [25] 张坤普, 徐宪斌, 田纪春. 小麦籽粒产量及穗部相关性状的QTL 定位. 作物学报, 2009, 35: 270–278 Zhang K P, Xu X B, Tian J C. QTL Mapping for grain yield and spike related traits in common wheat. Acta Agron Sin, 2009, 35: 270–278 (in Chinese with English abstract) [26] 丁安明, 李君, 崔法, 赵春华, 马航运, 王洪刚. 利用小麦关联RIL 群体定位产量相关性状QTL. 作物学报, 2011, 37: 1511–1524 Ding A M, Li J, Cui F, Zhao C H, Ma H Y, Wang H G. QTL mapping for yield related traits using two associated RIL populations of wheat. Acta Agron Sin, 2011, 37: 1511–1524 (in Chinese with English abstract)

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[3] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[4] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[5] JIANG Peng, ZHANG Xu, WU Lei, HE Yi, ZHANG Ping-Ping, MA Hong-Xiang, KONG Ling-Rang. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2021, 47(5): 869-881.
[6] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[7] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[8] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[9] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[10] ZHANG Yi,XU Nai-Yin,GUO Li-Lei,YANG Zi-Guang,ZHANG Xiao-Qing,YANG Xiao-Ni. Optimization of test location number and replicate frequency in regional winter wheat variety trials in northern winter wheat region in China [J]. Acta Agronomica Sinica, 2020, 46(8): 1166-1173.
[11] LIU Pei-Xun,MA Xiao-Fei,WAN Hong-Shen,ZHENG Jian-Min,LUO Jiang-Tao,PU Zong-Jun. Comparative proteomic analysis of two wheat genotypes with contrasting grain softness index [J]. Acta Agronomica Sinica, 2020, 46(8): 1275-1282.
[12] HAN Le,DU Ping-Ping,XIAO Kai. Functional characteristics of TaPYR1, an abscisic acid receptor family gene in mediating wheat tolerance to drought stress [J]. Acta Agronomica Sinica, 2020, 46(6): 809-818.
[13] JIANG Peng,HE Yi,ZHANG Xu,WU Lei,ZHANG Ping-Ping,MA Hong-Xiang. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2020, 46(6): 858-868.
[14] Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG,Xiao-Ling WU. QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping [J]. Acta Agronomica Sinica, 2020, 46(3): 341-353.
[15] WU Hai-Tao, ZHANG Yong, SU Bo-Hong, Lamlom F Sobhi, QIU Li-Juan. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1667-1677.
Full text



No Suggested Reading articles found!