Maize, Density, General combining ability,Specific combining ability, AMMI model,"/> Combining Ability of Maize Inbred Lines from ShaanA Group and Shaan B Group under Different Density Conditions
Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (09): 1328-1336.doi: 10.3724/SP.J.1006.2017.01328


Combining Ability of Maize Inbred Lines from ShaanA Group and Shaan B Group under Different Density Conditions

WANG Bo-Xin,WANG Ya-Hui,CHEN Peng-Fei,LIU Xu-Dong-Yu,FENG Zhi-Qian,HAO Yin-Chuan,ZHANG Ren-He,ZHANG Xing-Hua,XUE Ji-Quan*   

  1. College of Agronomy, Northwest A&F University / Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Yangling712100, China
  • Received:2016-11-14 Revised:2017-04-20 Online:2017-09-12 Published:2017-05-08
  • Contact: Xue Jiquan, E-mail:
  • Supported by:

    The study was supported by the China Agriculture Research System(CARS-02-64) and Shaanxi Key Research and Development Project about Innovation and Utilization of Maize Elite Germplasm (2016TZC-N-2-1).


The objective of this study was to investigate the effectiveness of high-density breeding strategy through analyzing genetic components and general combining ability (GCA) effectsunder different planting densities. Seventeen maize inbred lines selected under high density were test-crossed with two testers (Zheng 58, Chang 7-2) in the North Carolina Design II. Thirty-four crosses were evaluated under different density conditions (45 000, 67 500, and 90 000 plants ha-1) in 2014 and 2015 at Yangling, Changwu and Yulin in Shaanxi province. The genetic variance components for grain yield and other traits were estimated using PROC VARCOMP method. Frequency distribution was used to analyze the response of GCA for grain yield and other traits under different densities. The stability of maize inbred lines and crosses was evaluated based on AMMI model. The grain yield, stalk lodging rate and rind penetration strength were mostly controlled by additive gene action, while the inheritance of sterile plant rate controlled by non-additive gene action. Also, the contribution of additive gene action to total variance increasedwith increasing planting density. The average of general combining ability for grain yield, sterile plant rate, stalk lodging rate and rind penetration strength increased by 0.28, -0.21, -0.03, and 0.02, respectively, from low density to high density. The correlations between GCA of the inbred lines and their crosses were significant (r=0.877**, r=0.811**, r=0.672**) under different density. As the density increased, the number of stable maize inbred lines and crosses increased. These results indicate that increasing plant density to improve GCA for grain yield and other traits of inbred lines is an effective strategy to enhance tolerance to high plant density and yield stability.

Key words: Maize')">

[1]Duvick D N. The contribution of breeding to yield advances in maize. AdvAgron, 2005, 86: 83–145
[2]Duvick D N. Genetic progress in yield of United States maize (Zea mays L.). Maydica, 2005, 50: 193–200
[3]Luque S F, Cirilo A G, Otegui M E. Genetic gains in grain yield and related physiological attributes in Argentine maize hybrids. Field Crops Res, 2006, 95: 383–397
[4]Ci X, Li M, Liang Z, Xie Z, Zhang D, Li X, Lu Z, Ru G, Bai L, Xie C, Hao Z, Zhang S. Genetic contribution to advanced yield for maize hybrids released from 1970 to 2000 in China. Crop Sci,2011, 51: 13–20
[5]Bruulsema T W M, TollenaarM, Heckman J R. Boosting crop yields in the next century. Better Crops with Plant Food, 2000, 84: 9–13
[6]Duvick D N. Genetic contributions to yield gains of U.S. hybridmaize, 1930?1980. In: Genetic Contributions to Yield Gains ofFive Major Crop Plants. Proceedings of a Symposium. Madison,Wis. (USA), 1984. pp 15–47
[7]Duvick D N. What is yield? In: Developing Drought and LowN-tolerant Maize. Proceedings of Symposium. El Batan, Mexico: CIMMYT, 1996. pp 332−335
[8]Troyer A F. Adaptation and heterosis in corn and mule hybrids. Crop Sci, 2006, 46:528–543
[9]Tollenaar M, Wu J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci, 1999, 39: 1597–1604
[10]张世煌. 郑单958带给我们的创新思路和发展机遇. 玉米科学, 2006, 14(6): 4–6
Zhang S H. Revelation and challenges on maize breeding strategy revealed by hybrid Zhengdan958. J Maize Sci, 2006, 14(6):4–6 (in Chinese with English abstract)
[11]薛吉全, 张仁和, 马国胜, 路海东, 张兴华, 李凤艳, 郝引川, 邰书静. 种植密度、氮肥和水分胁迫对玉米产量形成的影响.作物学报,2010, 36: 1022−1029
Xue J Q, Zhang R H, Ma G S, Lu H D, Zhang X H, Li F Y, Hao Y C, Tai S J. Effects of plant density, nitrogen application, and water stress on yield formation of maize.ActaAgron Sin, 2010, 36: 1022−1029(in Chinese with English abstract)
[12]ReifJ C, Hallauer A R, Melchinger A E. Heterosis and heterotic patterns in maize. Maydica, 2005, 50: 215–223
[13]杨晓钦,张仁和, 薛吉全, 邰书静, 张兴华, 郭艳萍, 郭德林. 非生物胁迫对玉米杂交种及其亲本自交系产量性状的影响. 作物学报, 2013, 39: 1325–1329
Yang X Q, Zhang R H, Xue J Q, Tai S J, Zhang X H, Guo Y P, Guo D L. Effects of abiotic stress on yield traits of maize hybrids and their parental inbred lines. ActaAgron Sin, 2013, 39: 1325–1329 (in Chinese with English abstract)
[14]Nyquist W E, Baker R J. Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci,1991, 10: 235–322
[15]Anita D H, ZygmuntK, Kielczewska H. Genetic analysis of line×testerprogenies compared in orthogonally supplemented efficiency balanced incompleteblock designs. Biometrical J, 1989, 31: 753–757
[16]BakerRJ. Issues in diallel analysis. Crop Sci, 1978, 18: 533–536
[17]Cox J, Frey K J. Combining ability and the selection of parents for specific oat mating. Crop Sci,1984, 24: 963–967
[18]Gauchjr H G, Zobel RW. Predictive and postdictive success of statistical analyses of yield trials. TheorAppl Genet,1988, 76: 1–10
[19]Goodnight C J. Epitasis and the effect of founder events on the additive genetic variance. Evolution, 1988, 42: 441–454
[20]Betrán F J, Beck D, Bänziger M, Edmeades G O. Genetic analysis of inbred and hybrid grain yield under stress and non-stress environments in tropical maize. Crop Sci, 2003, 43: 807–817
[21]Badu-Apraku B, Oyekunle M, Akinwale R O. Combining ability and heterotic groups of early-maturing tropical white maize inbred lines under stress and non-stress environments. AgronJ,2011, 103: 544–557
[22]梁文科, 张世煌, 戚廷香, 庹洪章, 刘永忠, 郑用琏, 徐尚忠. 热带温带玉米群体产量性状遗传力及遗传方差分量的剖析. 中国农业科学, 2006, 39: 2178–2185
Liang W K, Zhang S H, Qi T X, Tuo H Z, Liu Y Z, Zheng Y L, Xu S Z. Dissection of heritability and genetic variance components for yield traits in tropical and temperate maize populations. SciAgric Sin, 2006, 39: 2178–2185(in Chinese with English abstract)
[23]王文斌, 徐淑兔, 高杰, 张兴华, 郭东伟, 李向阳, 薛吉全. 基于SNP标记的玉米自交系遗传多样性分析.玉米科学, 2015, 23(2): 41–45
Wang W B, Xu S T, Gao J, Zhang X H,Guo D W, Li X Y, Xue J Q. Analysis of genetic diversity of maize inbred lines based on SNP markers.J Maize Sci, 2015, 23(2): 41–45(in Chinese with English abstract)
[24]杨泽勇, 张兴华, 薛吉全. 3种密度玉米自交系选择的配合力分析.湖北农业科学, 2009, 48: 576–579
Yang Z Y, Zhang X H, Xue J Q. Study on combining ability of maize inbred lines selected in three densities. Hubei AgricSci, 2009, 48: 576–579(in Chinese with English abstract)
[25]高瑞景, 李泾孝, 张仁和, 毛建昌. 两种密度系谱法选择玉米自交系的一般配合力分析. 西北农林科技大学学报(自然科学版), 2008, 36(6): 56–60
GaoR J, Li J X, Zhang R H, Mao J C. Selection of maize inbred lines with pedigree under two densities–based on the general combination ability analysis.J Southwest A&F Univ(Nat SciEdn), 2008, 36(6): 56–60 (in Chinese with English abstract)
[26]梁雨娟, 刘振库, 李继竹, 尹日成, 王远路, 姜龙, 杨伟光. 不同密度条件下玉米杂种优势及配合力研究. 玉米科学, 2012, 20(6): 25–29
Liang Y J, Liu Z K, Li J Z, Yi R C, Wang Y L, Jiang L, Yang W G. Heterosis and combining ability of maize under different density. J Maize Sci,2012, 20(6): 25–29 (in Chinese with English abstract)
[27]张铭堂, 张国良,才卓. 玉米自交系选育的理论基础与实践经验. 玉米科学, 2010, 18(2): 1–4
Zhang M T, Zhang G L, Cai Z. Theoretical foundation and practice experience of breeding for maize inbred lines. J Maize Sci, 2010, 18(2):1–4 (in Chinese with English abstract)
[28]FrancisTR, Kannenberg LW. Yield stability studies in short-season maize: I. A descriptive method for grouping genotypes. Can J Plant Sci,1978, 58: 1029–1034
[29]Matteo J A, Ferreyra J M, Cerrudo A A, Echarte L, Andrade F H.Yield potential and yield stability of Argentine maize hybrids over 45 years of breeding. Field Crops Res, 2016, 197: 107–116
[30]Dow E W, Daynard T B, Muldoon J F, Major D J, Thurtell G W. Resistance to drought and density stress in Canadian and Europeanmaize (Zea mays L.) hybrids. CanJPlant Sci,1984, 64: 575–585

[1] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[2] LOU Hong-Xiang, JI Jian-Li, KUAI Jie, WANG Bo, XU Liang, LI Zhen, LIU Fang, HUANG Wei, LIU Shu-Yan, YIN Yu-Feng, WANG Jing, ZHOU Guang-Sheng. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(9): 1724-1740.
[3] CHEN Yun, LIU Kun, ZHANG Hong-Lu, LI Si-Yu, ZHANG Ya-Jun, WEI Jia-Li, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars [J]. Acta Agronomica Sinica, 2021, 47(8): 1540-1550.
[4] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[5] DONG Er-Wei, WANG Jin-Song, WU Ai-Lian, WANG Yuan, WANG Li-Ge, HAN Xiong, GUO Jun, JIAO Xiao-Yan. Effects of row space and plant density on characteristics of grain filling, starch and NPK accumulation of sorghum grain of different parts of panicle [J]. Acta Agronomica Sinica, 2021, 47(12): 2459-2470.
[6] ZHANG Jin-Dan, FAN Hong, DU Jin-Yong, YIN Wen, FAN Zhi-Long, HU Fa-Long, CHAI Qiang. Synchronously higher planting density can increase yield via optimizing interspecific interaction of intercropped wheat and maize [J]. Acta Agronomica Sinica, 2021, 47(12): 2481-2489.
[7] LEI Wei, WANG Rui-Li, WANG Liu-Yan, YUAN Fang, MENG Li-Jiao, XING Ming-Li, XU Lu, TANG Zhang-Lin, LI Jia-Na, CUI Cui, ZHOU Qing-Yuan. Genome-wide association study of seed density and its related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(11): 2099-2110.
[8] REN Yuan-Yuan, ZHANG Li, YU Yao-Chuang, ZHANG Yan-Jun, ZHANG Sui-Qi. Competitive effect of soybean density on yield formation in maize/soybean intercropping systems [J]. Acta Agronomica Sinica, 2021, 47(10): 1978-1987.
[9] LI Min, LUO De-Qiang, JIANG Xue-Hai, JIANG Ming-Jin, JI Guang-Mei, LI Li-Jiang, ZHOU Wei-Jia. Regulations of controlled irrigations and increased densities on yield formation of hybrid indica rice under nitrogen-reduction conditions [J]. Acta Agronomica Sinica, 2020, 46(9): 1430-1447.
[10] ZHAO Xiao-Hong,BAI Yi-Xiong,WANG Kai,YAO You-Hua,YAO Xiao-Hua,WU Kun-Lun. Effects of planting density on lodging resistance and straw forage characteristics in two hulless barley varieties [J]. Acta Agronomica Sinica, 2020, 46(4): 586-595.
[11] JIN Rong,LI Zhong,YANG Yun,ZHOU Fang,DU Lun-Jing,LI Xiao-Long,KONG Fan-Lei,YUAN Ji-Chao. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan [J]. Acta Agronomica Sinica, 2020, 46(4): 614-630.
[12] Fei-Na ZHENG,Jin-Peng CHU,Xiu ZHANG,Li-Wei FEI,Xing-Long DAI,Ming-Rong HE. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar [J]. Acta Agronomica Sinica, 2020, 46(3): 423-431.
[13] Shi-Hong WANG,Zhong-Xu YANG,Jia-Liang SHI,Hai-Tao LI,Xian-Liang SONG,Xue-Zhen SUN. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton [J]. Acta Agronomica Sinica, 2020, 46(3): 395-407.
[14] Jun-Hua LIU, Zheng-Feng WU, Pu SHEN, Tian-Yi YU, Yong-Mei ZHENG, Xue-Wu SUN, Lin LI, Dian-Xu CHEN, Cai-Bin WANG, Shu-Bo WAN. Effects of nitrogen and density interaction on root morphology, plant characteristic and pod yield under single seed precision sowing in peanut [J]. Acta Agronomica Sinica, 2020, 46(10): 1605-1616.
[15] WANG Su-Fang,XUE Hui-Yun,ZHANG Zhi-Yong,TANG Ju-Xiang. Coordination of root growth and leaf senescence in cotton [J]. Acta Agronomica Sinica, 2020, 46(01): 93-101.
Full text



No Suggested Reading articles found!