Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (01): 93-101.doi: 10.3724/SP.J.1006.2020.94043


Coordination of root growth and leaf senescence in cotton

WANG Su-Fang,XUE Hui-Yun,ZHANG Zhi-Yong(),TANG Ju-Xiang   

  1. Henan Institute of Science and Technology/Henan Collaborative Innovation Center of Modern Biological Breeding/Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang 453003, Henan, China
  • Received:2019-03-18 Accepted:2019-08-09 Online:2020-01-12 Published:2019-09-10
  • Contact: Zhi-Yong ZHANG E-mail:z_zy123@126.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (31271648, 31571600).(31271648);This study was supported by the National Natural Science Foundation of China (31271648, 31571600).(31571600)


Two cotton cultivars, Baimian 1 and DP99B, were used to investigate the root growth and vigor, leaf senescence and yield in the field during 2011-2012. Baimian 1 produced higher cotton fiber yield than DP99B during two years. Baimian 1 had better leaf photosynthetic rate or performance index based on light energy absorption, higher root length density (RLD) and better root distribution, and higher root vigor than DP99B, evidenced by higher volume of bleeding sap, in which higher percentage of protein contents was contained. In 2012, DP99B had faster root growth with higher RLD at middle August and higher root vigor at late July than Baimian 1, and the total xylem sap amount of DP99B was 1.7 times that of Baimian 1. After bloom peaking, the higher density of root, more bleeding sap and slower leaf senescence showed the coordination to a great extent, confirming that leaf senescence is regulated by root growth and root vigor in later cotton growth season.

Key words: cotton, root distribution, root length density, bleeding sap, leaf senescence

Table 1

Cotton yields and the ratio of seed cotton before frost of different genotypes under field cultivation"

年份Year 品种
Seed cotton
(kg hm-2)
Ginned cotton
(kg hm-2)
Seed cotton before frost (kg hm-2)
Ginned cotton before frost (kg hm-2)
Ratio of seed cotton before frost (%)
2011 DP99B 4026.0 a 1576.5 b 3375.0 a 1318.5 b 83.8 a
百棉1号Baimian 1 4164.0 a 1792.5 a 3573.0 a 1539.0 a 85.8 a
2012 DP99B 4026.0 b 1587.0 b 3829.5 b 1509.0 b 95.1 a
百棉1号Baimian 1 4656.0 a 2019.0 a 4311.0 a 1869.0 a 92.6 a

Table 2

Main stem nodes above white flower (No.) and white flower opening trends in two cotton genotypes (No. 30 plants -1) in 2012"

日期 Date
June 28/June 30 July 5/July 7 July 12/July 14 July 19/July 21 July 26/July 28 -/August 4
DP99B 8.3 b/2 a 6.7 b/14 a 6.8 b/31 a 6.0 b/11 a 3.8 a/15 b -/16 b
百棉1号Baimian 1 9.4 a/1 a 7.5 a/13 a 7.2 a/31 a 6.6 a/11 a 3.8 a/19 a -/23 a

Fig. 1

Net photosynthetic rate change of the first leaf counted from the stem top of two cotton genotypes in 2011"

Table 3

Trends of leaf chlorophyll fluorescence with time for different cotton genotypes in 2012"

Date (month/day)
倒1叶 First leaf counted from stem top
7/20 DP99B 526 a 0.84 a 6.98 a
百棉1号 Baimian 1 541 a 0.84 a 6.97 a
8/10 DP99B 558 a 0.83 a 4.71 b
百棉1号 Baimian 1 538 a 0.84 a 5.83 a
8/30 DP99B 551 a 0.84 a 5.10 b
百棉1号 Baimian 1 477 b 0.84 a 6.10 a
9/20 DP99B 604 a 0.80 b 2.72 b
百棉1号 Baimian 1 551 b 0.83 a 3.77 a
10/11 DP99B 610 a 0.76 b 0.51 b
百棉1号Baimian 1 487 b 0.83 a 2.68 a

Table 4

Longitudinal distribution of RLD, RSD, RVD for the two cotton genotypes at September 20th of 2011"

Soil depth
根长度密度RLD (mm cm-3) 根表面积密度RSD (mm2 cm-3) 根体积密度RVD (mm3 cm-3)
DP99B 百棉1号Baimian 1 DP99B 百棉1号Baimian 1 DP99B 百棉1号Baimian 1
0-20 cm 3.27 a 2.76 a 4.62 a 3.37 b 0.51 a 0.33 b
20-40 cm 1.55 b 3.47 a 2.34 b 4.61 a 0.28 b 0.48 a
0-40 cm 2.41 b 3.12 a 3.48 a 3.99 a 0.39 a 0.41 a
纵向分布LD (%) 47.33 b 125.98 a 50.63 b 136.56 a 55.00 b 146.15 a

Table 5

Longitudinal distribution of RLD, RSD, RVD for the two cotton genotypes in 2012"

Date (month/day)
Soil depth
RLD (mm cm-3)
RSD (mm cm-3)
RVD (mm3 cm-3)
DP99B 百棉1号Baimian 1 DP99B 百棉1号
Baimian 1
DP99B 百棉1号Baimian 1
7/4 0-20 2.00 a 2.17 a 2.50 a 2.60 a 0.25 a 0.25 a
20-40 1.61 a 1.98 a 1.98 a 2.53 a 0.19 a 0.25 a
40-60 0.79 b 1.11 a 1.20 b 1.72 a 0.15 a 0.21 a
60-80 0.30 a 0.28 a 0.56 a 0.51 a 0.08 a 0.08 a
0-80 1.17 a 1.38 a 1.56 a 1.84 a 0.17 a 0.20 a
纵向分布LD (%) 30.17 a 33.34 a 39.43 a 43.63 a 52.38 a 58.33 a
7/24 0-20 5.57 a 5.08 a 6.02 a 5.66 a 0.53 a 0.51 a
20-40 3.24 a 2.61 a 4.06 a 2.82 b 0.40 a 0.23 b
40-60 2.26 b 3.36 a 2.55 b 4.04 a 0.23 b 0.38 a
60-80 1.20 a 1.24 a 1.75 a 1.67 a 0.21 a 0.19 a
0-80 3.07 a 3.07 a 3.60 a 3.55 a 0.34 a 0.33 a
纵向分布LD (%) 39.24 b 59.81 a 42.64 b 67.38 a 47.73 b 77.14 a
8/11 0-20 9.26 a 7.28 b 8.38 a 6.59 b 0.62 a 0.47 a
20-40 3.67 a 2.93 a 3.75 a 2.94 b 0.30 a 0.23 a
40-60 3.27 a 3.49 a 3.67 a 3.89 a 0.34 a 0.34 a
60-80 2.06 a 1.56 a 2.54 a 2.14 a 0.25 a 0.23 a
0-80 4.57 a 3.82 b 4.59 a 3.89 b 0.38 a 0.32 a
纵向分布LD (%) 41.26 b 49.48 a 51.21 b 63.28 a 65.12 b 81.82 a
9/3 0-20 6.47 b 8.85 a 6.62 b 8.66 a 0.53 b 0.68 a
20-40 3.12 a 3.39 a 3.11 a 3.67 a 0.25 a 0.32 a
40-60 2.56 a 2.16 a 2.67 a 2.20 a 0.21 a 0.19 a
60-80 1.40 a 1.66 a 1.91 a 2.33 a 0.21 a 0.25 a
0-80 3.39 a 4.01 a 3.58 a 4.21 a 0.30 a 0.36 a
纵向分布LD (%) 41.31 a 31.22 b 47.12 a 36.71 b 54.05 a 44.68 b
9/23 0-20 6.91 b 9.24 a 9.10 b 11.42 a 0.98 b 1.12 a
20-40 3.75 b 5.18 a 4.35 b 5.57 a 0.40 a 0.49 a
40-60 3.07 b 3.95 a 3.28 b 4.66 a 0.28 b 0.45 a
60-80 1.37 b 3.06 a 1.88 b 3.89 a 0.21 b 0.40 a
0-80 3.78 b 5.36 a 4.65 b 6.38 a 0.47 b 0.62 a
纵向分布LD (%) 41.67 b 48.65 a 38.33 b 50.29 a 35.38 b 52.63 a
10/13 0-20 6.03 b 9.86 a 7.05 b 10.87 a 0.68 b 0.95 a
20-40 3.00 b 3.47 a 4.04 b 5.52 a 0.42 b 0.70 a
40-60 1.99 b 3.55 a 2.36 b 4.31 a 0.23 b 0.42 a
60-80 1.17 b 1.88 a 1.48 b 2.66 a 0.15 b 0.30 a
0-80 3.05 b 4.69 a 3.73 b 5.84 a 0.37 b 0.59 a
纵向分布LD (%) 34.99 b 40.67 a 34.63 b 42.53 a 34.62 b 43.59 a

Table 6

Total volume, flow velocity, and protein content inbleeding sap of two cotton genotypes in 2012"

伤流液 Bleeding sap
Total volume (mL)
(μL h-1)
Protein conc.
(μg mL-1)
Total protein content
7/22 DP99B 11.1 a 38.4 a 0.8 a 9.4 a
百棉1号Baimian 1 6.6 b 23.0 b 0.8 a 5.1 b
8/02 DP99B 8.5 a 29.6 a 1.5 a 12.2 a
百棉1号Baimian 1 7.3 a 25.5 a 1.4 a 10.4 a
8/22 DP99B 4.9 b 17.1 b 2.7 a 13.6 b
百棉1号Baimian 1 14.0 a 48.7 a 2.3 b 31.1 a
9/15 DP99B 0.4 b 1.4 b 1.2 a 0.5 b
百棉1号Baimian 1 7.1 a 24.7 a 1.0 a 7.3 a
[1] Hodge A, Berta G, Doussan C, Francisco M, Crespi M . Plant root growth, architecture and function. Plant Soil, 2009,321:153-187.
doi: 10.1007/s11104-009-9929-9
[2] Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H . Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Res, 2009,113:31-40.
doi: 10.1016/j.fcr.2009.04.004
[3] Qi W Z, Liu H H, Liu P, Dong S T, Zhao B Q, So H B, Li G, Liu H D, Zhang J W, Zhao B . Morphological and physiological characteristics of corn (Zea mays L.) roots from cultivars with different yield potentials. Eur J Agron, 2012,38:54-63.
doi: 10.1016/j.eja.2011.12.003
[4] Mu X H, Chen F J, Wu Q P, Chen Q W, Wang J F, Yuan L X, Mi G H . Genetic improvement of root growth increases maize yield via enhanced post-silking nitrogen uptake. Eur J Agron, 2015,63:55-61.
doi: 10.1016/j.eja.2014.11.009
[5] Brouder S M, Cassman K G . Root development of two cotton cultivars in relation to potassium uptake and plant growth in a vermiculitic soil. Field Crops Res, 1990,23:187-203.
doi: 10.1016/0378-4290(90)90054-F
[6] 凌启鸿, 陆卫平, 蔡建中, 曹显祖 . 水稻根系分布与叶角关系的研究初报. 作物学报, 1989,15:123-131.
Ling Q H, Lu W P, Cai J Z, Cao X Z . The relationship between root distribution and leaf angle in rice plant. Acta Agron Sin, 1989,15:123-131 (in Chinese with English abstract).
[7] Kong L, Si J, Sun M, Feng B, Zhang B, Li S, Wang Z, Wang F . Deep roots are pivotal for regulating post-anthesis leaf senescence in wheat (Triticum aestivum L.). J Agron Crop Sci, 2013,199:209-216.
doi: 10.1111/jac.12007
[8] 王余龙, 蔡建中, 何杰升, 陈林, 徐家宽, 卞悦 . 水稻颖花根活量与籽粒灌浆结实的关系. 作物学报, 1992,18:81-89.
Wang Y L, Cai J Z, He J S, Chen L, Xu J K, Bian Y . The relationships between spikelet-root-activity and grain filling and ripening in rice (Oryza sativa). Acta Agron Sin, 1992,18:81-89 (in Chinese with English abstract).
[9] 潘晓华, 王永锐, 傅家瑞 . 水稻根系生长生理的研究进展. 植物学通报, 1996,13(2):13-20.
Pan X H, Wang Y R, Fu J R . Advance in the study on the growth-physiology in rice of root system ( Oryza sativa). Chin Bull Bot, 1996,13(2):13-20 (in Chinese with English abstract).
[10] 岳寿松, 于振文, 余松烈 . 小麦旗叶与根系衰老的研究. 作物学报, 1996,22:55-58.
Yue S S, Yu Z W, Yu S L . Senescence of flag leaf and root in wheat. Acta Agron Sin, 1996,22:55-58 (in Chinese with English abstract).
[11] Zhang Z, Xin W, Wang S, Zhang X, Dai H F, Sun R R, Frazier T, Zhang B H, Wang Q L . Xylem sap in cotton contains proteins that contribute to environmental stress response and cell wall development. Funct Integr Genomic, 2015,15:17-26.
doi: 10.1007/s10142-014-0395-y pmid: 25163431
[12] 邱鸿步, 潘裕才, 王斌斌, 陆定志 . 籼型水稻的叶片老化与植株伤流强度及产量关系的研究. 浙江农业科学, 1981, (4):175-178.
Qiu H B, Pan Y C, Wang B B, Lu D Z . The relationship between leaf senescence and the flow intensity of xylem sap, yield of indica rice. J Zhejiang Agric Sci, 1981, (4):175-178 (in Chinese with English abstract).
[13] 梁建生, 曹显祖 . 杂交水稻叶片的若干生理指标与根系伤流强度关系. 江苏农学院学报, 1993,14(4):25-30.
Liang J S, Cao X Z . Studies on the relationship between several physiological characteristics of leaf and bleeding rate of roots in hybrid rice ( O. sativa L.). J Jiangsu Agric Coll, 1993,14(4):25-30 (in Chinese with English abstract).
[14] 赵全志, 黄丕生, 凌启鸿, 高尔明, 董家胜 . 水稻颖花伤流量与群体质量的关系. 南京农业大学学报, 2000,23(3):9-12.
Zhao Q Z, Huang P S, Ling Q H, Gao E M, Dong J S . The relationship between spikelet-bleeding-intensity and population quality of rice. J Nanjing Agric Univ, 2000,23(3):9-12 (in Chinese with English abstract).
[15] 许凤英, 马均, 王贺正, 刘惠远, 黄清龙, 马文波, 明东风 . 强化栽培条件下水稻的根系特征及其与产量形成的关系. 杂交水稻, 2003,18(4):61-65.
Xu F Y, Ma J, Wang H Z, Liu H Y, Huang Q L, Ma W B, Ming D F . The characteristics of roots and their relation to the formation of grain yield under the cultivation by system of rice intensification (SRI). Hybrid Rice, 2003,18(4):61-65 (in Chinese with English abstract).
[16] Chen Y Z, Dong H Z . Mechanisms and regulation of senescence and maturity performance in cotton. Field Crops Res, 2016,189:1-9.
pmid: 27396141
[17] Chen Y Z, Kong X Q, Dong H Z . Removal of early fruiting branches impacts leaf senescence and yield by altering the sink/source ratio of field-grown cotton. Field Crops Res, 2018,216:10-21.
doi: 10.1016/j.fcr.2017.11.002
[18] 董合忠, 李维江, 唐薇, 张冬梅 . 棉花生理性早衰研究进展. 棉花学报, 2005,17:56-60.
Dong H Z, Li W J, Tang W, Zhang D M . Research progress in physiological premature senescence in cotton. Cotton Sci, 2005,17:56-60 (in Chinese with English abstract).
[19] Wright P R . Premature senescence of cotton-predominantly a potassium disorder caused by an imbalance of source and sink. Plant Soil, 1999,211:231-239.
doi: 10.1023/A:1004652728420
[20] Wang Y, Li B, Du M W, Eneji A E, Wang B M, Duan L S, Li Z H, Tian X L . Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency. J Exp Bot, 2012,63:5887-5901.
doi: 10.1093/jxb/ers238
[21] Zhao J Q, Li S, Jiang T F, Liu Z, Zhang W W, Jian G L, Qi F J . Chilling stress: the key predisposing factor for causing Alternaria alternata infection and leading to cotton(Gossypium hirsutum L.) leaf senescence. PLoS One, 2012,7:e36126.
doi: 10.1371/journal.pone.0036126 pmid: 22558354
[22] 孔祥强, 罗振, 李存东, 董合忠 . 棉花早衰的分子机理研究进展. 棉花学报, 2015,27:71-79.
doi: Y2015/V27/I1/71
Kong X Q, Luo Z, Li C D, Dong H Z . Molecular mechanisms of premature senescence in cotton. Cotton Sci, 2015,27:71-79 (in Chinese with English abstract).
doi: Y2015/V27/I1/71
[23] Dong H Z, Niu Y H, Li W J, Tang W, Li Z H, Zhang D M . Regulation effects of various training modes on source-sink relation of cotton. Chin J Appl Ecol, 2008,19:819-824.
[24] Dai J L, Dong H Z . Stem girdling influences concentrations of endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton. Acta Physiol Plant, 2011,33:1697-1705.
doi: 10.1007/s11738-010-0706-4
[25] 胡泽彬, 王素芳, 张新, 张志勇, 代海芳, 王清连 . 短季棉和长季棉钾效率和根系对钾缺乏响应的差异. 华北农学报, 2014,29(5):218-225.
doi: 10.7668/hbnxb.2014.05.037
Hu Z B, Wang S F, Zhang X, Zhang Z Y, Dai H F, Wang Q L . Differences of potassium efficiency and root responses to potassium deficiency between short-and long-season cotton genotypes. Acta Agric Boreali-Sin, 2014,29(5):218-225 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2014.05.037
[26] Zhang Z Y, Tian X L, Duan L S, Wang B M, He Z P, Li Z H . Differential responses of conventional and Bt-transgenic cotton to potassium deficiency. J Plant Nutr, 2007,30:659-670.
doi: 10.1080/01904160701289206
[27] Cassman K G, Bryant D C, Higashi S L, Roberts B A, Kerby T A . Soil potassium balance and cumulative cotton response to annual potassium additions on a vermiculitic soil. Soil Sci Soc Am J, 1989,53:805-812.
doi: 10.2136/sssaj1989.03615995005300030030x
[28] 段俊, 梁承邺, 黄毓文 . 杂交水稻开花结实期间叶片衰老. 植物生理学报, 1997,23:139-144.
Duan J, Liang C Y, Huang Y W . Studies on leaf senescence of hybrid rice at flowering and grain formation stage. Acta Phytophysiol Sin, 1997,23:139-144 (in Chinese with English abstract).
[29] Nooden L D . Integration of soybean pod development and monocarpic senescence. Physiol Planta, 1984,62:273-284.
doi: 10.1111/ppl.1984.62.issue-2
[30] Miceli F, Crafts-Brandner S J, Egli D B . Physical restriction of pod growth alters development of soybean plants. Crop Sci, 1995,35:1081-1085.
[31] 黄升谋 . 水稻源库关系与叶片衰老的研究. 江西农业大学学报, 2001,23(2):171-173.
Huang S M . A study on the relationship between the leaf senescence and source sink ratio in hybrid rice. Acta Agric Univ Jiangxiensis, 2001,23(2):171-173 (in Chinese with English abstract).
[32] Zhao C Y, Yan Y Y, Yimamu Y, Li J Y . Effects of soil moisture on cotton root length density and yield under drip irrigation with plastic mulch in Aksu Oasis farmland. J Arid Land, 2010,2:243-249.
[33] Ning S R, Shi J C, Zuo Q, Wang S, Ben-Gal A . Generalization of the root length density distribution of cotton under film mulched drip irrigation. Field Crops Res, 2015,177:125-136.
doi: 10.1016/j.fcr.2015.03.012
[34] Chen J, Liu L T, Wang Z B, Sun H C, Zhang Y J, Lu Z Y, Li C D . Determining the effects of nitrogen rate on cotton root growth and distribution with soil cores and minirhizotrons. PLoS One, 2018,13:e0197284.
doi: 10.1371/journal.pone.0197284 pmid: 29750816
[35] Yang X K, Zhang Z Q, Niu Y, Tian H Y, Ma F Y . Cotton root morphology and dry matter accumulation at different film removal times. Agron J, 2017,109:2586-2597.
doi: 10.2134/agronj2017.06.0310
[36] Gerik T J, Morrison J E, Chichester F W . Effects of controlled traffic on soil physical properties and crop rooting. Agron J, 1987,79:434-438.
doi: 10.2134/agronj1987.00021962007900030006x
[37] Pillinger C, Paveley N, Foulkes M J, Spink J . Explaining variation in the effects of take-all (Gaeumannomyces graminis var. tritici) on nitrogen and water uptake by winter wheat. Plant Pathol, 2005,54:491-501.
doi: 10.1111/ppa.2005.54.issue-4
[38] Hoad S P, Russell G, Kettlewell P S, Belshaw M . Root system management in winter wheat: practices to increase water and nitrogen use. HGCA Project Report, 2004. p 351.
[39] Atta B M, Mahmood T, Trethowan R M . Relationship between root morphology and grain yield of wheat in north-western NSW, Australia. Aust J Crop Sci, 2013,7:2108-2115.
[1] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[2] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[3] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[4] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[5] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[6] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[7] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[8] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[9] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[10] ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623.
[11] GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247.
[12] MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826.
[13] XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671.
[14] ZHOU Guan-Tong, LEI Jian-Feng, DAI Pei-Hong, LIU Chao, LI Yue, LIU Xiao-Dong. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing [J]. Acta Agronomica Sinica, 2021, 47(3): 427-437.
[15] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
Full text



No Suggested Reading articles found!