Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (12): 1746-1759.doi: 10.3724/SP.J.1006.2017.01746
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
HU De-Yi1, CAI Lu1, CHEN Guang-Deng1,*, ZHANG Xi-Zhou1,Chunji LIU2
[1]Schachtman D, Reid R, Ayling S M. Phosphorus uptake by plants: from soil to cell. Plant Physiol, 1998, 116: 447–453 [2]Hermans C, Hammond J P, White P J, Verbruggen N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci, 2006, 11: 610–617 [3]Hammond J P, White P J. Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot, 2008, 59: 93–109 [4]唐宏亮, 申建波, 张福锁, Rengel Z. 磷和外源生长素对白羽扇豆(Lupinus albus L.)根形态和生理特性的影响. 中国科学C辑: 生命科学, 2013, 43: 201–212 Tang H L, Shen J B, Zhang F S, Rengel Z. Interactive effects of phosphorus deficiency and exogenous auxin on root morphological and physiological traits in white lupin (Lupinus albus L.). Sci Sin Vitae, 2013, 43: 201–212 (in Chinese) [5]赵静, 付家兵, 廖红, 何勇, 年海, 胡月明, 邱丽娟, 董英山, 严小龙. 大豆磷效率应用核心种质的根构型性状评价. 科学通报, 2004, 49: 1249–1257 Zhao J, Fu J B, Liao H, He Y, Nian H, Hu Y M, Dong Y S, Yan X L. The traits evaluation about root architecture of soybean core collection’s efficiency of phosphorus application. Chin Sci Bull, 2004, 49: 1249–1257 (in Chinese) [6]Tiessen H. Phosphorus in the global environment: transfers, cycles and management. Oceanographic Literature Review, 1995: 27–42 [7]郭程瑾, 李宾兴, 王斌, 李雁鸣, 肖凯. 小麦高效吸收和利用磷素的生理机制. 作物学报, 2006, 32: 827–832 Guo C J, Li B X, Wang B, Li Y M, Xiao K. Physiological mechanisms of absorption and use of phosphorus with high efficiency in wheat cultivars. Acta Agron Sin, 2006, 32: 827–832 (in Chinese with English abstract) [8]韦还和, 孟天瑶, 李超, 张洪程, 戴其根, 马荣荣, 王晓燕, 杨筠文. 水稻甬优12产量13.5 t hm-2以上超高产群体的氮素积累、分配与利用特征. 作物学报, 2016, 42: 886–897 Wei H H, Meng T Y, Li C, Zhang H C, Dai Q G, Ma R R, Wang X Y, Yang J W. Accumulation, distribution, and utilization characteristics of phosphorus in Yongyou 12 yielding over 13.5 t ha–1. Acta Agron Sin, 2016, 42: 886–897 (in Chinese with English abstract) [9]蔡秋燕, 张锡洲, 李廷轩, 陈光登, 吴德勇. 磷高效野生大麦拔节期对植酸态有机磷的利用. 中国农业科学, 2015, 48: 3146–3155 Cai Q Y, Zhang X Z, Li T X, Chen G D, Wu D Y. The utilization of phytate organic phosphorus in P-efficient wild barley genotypes at jointing stage. Sci Agric Sin, 2015, 48: 3146–3155 (in Chinese with English abstract) [10]林海建, 张志明, 张永中, 高世斌, 潘光堂. 作物氮、磷、钾利用相关性状的QTL定位研究进展. 植物营养与肥料学报, 2010, 16: 732–743 Lin H J, Zhang Z M, Zhang Y Z, Gao S B, Pan G T. Advancement of QTL analysis for traits associated to N, P and K utilization. Plant Nutr Fert Sci, 2010, 16: 732–743 (in Chinese with English abstract) [11]Wissuwa M, Yano M, Ae N. Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet, 1998, 97: 777–783 [12]Chin J H, Lu X, Haefele S M, Gamuyao R, Ismail A, Wissuwa M. Development and application of gene-based markers for the major rice QTL Phosphorus uptake 1. Theor Appl Genet, 2010, 120: 1073–1086 [13]Li Y D, Wang Y J, Tong Y P, Gao J G, Zhang J S, Chen S Y. QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L. Merr.). Euphytica, 2005, 142: 137–142 [14]King K E, Lauter N, Lin S F, Scott M P, Shoemaker R C. Evaluation and QTL mapping of phosphorus concentration in soybean seed. Euphytica, 2013, 189: 261–269 [15]Yan X, Liao H, Beebe S E, Blair M W, Lynch J P. QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant and Soil, 2004, 265: 17–29 [16]Yang M, Ding G D, Shi L, Xu F S, Meng J L. Detection of QTL for phosphorus efficiency at vegetative stage in Brassica napus. Plant & Soil, 2011, 339: 97–111 [17]Su J Y, Xiao Y M, Li M, Liu Q Y, Li B, Tong Y P, Jia J Z, Li Z S. Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage. Plant & Soil, 2006, 281: 25–36 [18]Su J Y, Zheng Q, Li H W, Li B, Jing R L, Tong Y P. Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci, 2009, 176: 824–836 [19]Guo Y, Kong F M, Xu Y F, Zhao Y, Liang X, Wang Y Y, An D, Li S. QTL mapping for seedling traits in wheat grown under varying concentrations of N, P and K nutrients. Theor Appl Genet, 2012, 124: 851–865 [20]Kjar B, Jensen J. The inheritance of nitrogen and phosphorus content in barley analysed by genetic markers. Hereditas, 1995, 123: 109–119 [21]Gong X, Wheeler R, Bovill W D, Mcdonald G K. QTL mapping of grain yield and phosphorus efficiency in barley in a Mediterranean-like environment. Theor Appl Genet, 2016, 129: 1657–1672 [22]唐旭, 陈义, 吴春艳, 杨生茂, 刘玉学, 吕豪豪, 马义兵, 李菊梅. 大麦长期肥料效率和土壤养分平衡. 作物学报, 2013, 39: 665–672 Tang X, Chen Y, Wu C Y, Yang S M, Liu Y X, Lyu H H, Ma Y B, Li J M. Fertilizer efficiency and soil apparent nutrient balance for barley under long-term fertilization. Acta Agron Sin, 2013, 39: 665–672 (in Chinese with English abstract) [23]鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. pp 309–314 Lu R K. Analytical Methods of Soil and Agrochemistry. Beijing: China Agricultural Science and Technology Press, 2000. pp 309–314 (in Chinese) [24]Van O J W. JointMap 4, Software for the calculation of genetic linkage maps in experimental populations. Wageningen, 2006 (http://www.kyazma.nl/docs/JM4manual.pdf) [25]Van O J W. MapQTL version 6.0, Software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, 2009. https://www.kyazma.nl/docs/MQ6Manual.pdf [26]Chen A, Chen X, Wang H, Liao D H, Gu M, Qu H Y, Sun S B, Xu G H. Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Pht1 family genes in response to Pi deficiency in tomato. BMC Plant Biol, 2014, 14: 61 [27]Karandashov V, Bucher M. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci, 2005, 10: 22–29 [28]Guo B, Jin Y, Wussler C, Blancaflor E B , Motes C M, Versaw W K. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol, 2008, 177:889–898 [29]Li J Z, Xie Y, Dai A Y, Liu L F, Li Z C. Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice. J Genet Genomics, 2009, 36: 173–183 [30]崔世友, 耿雷跃, 孟庆长, 喻德跃. 大豆苗期耐低磷性及其QTL定位. 作物学报, 2007, 33: 378–383 Cui S Y, Geng L Y, Meng Q C, Yu D Y. QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L.) during seedling stage. Acta Agron Sin, 2007, 33: 378–383 (in Chinese with English abstract) [31]Zhang H W, Huang Y, Ye X S, Shi L, Xu F S. Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress. Plant & Soil, 2009, 320: 91–102 [32]Beebe S E, Rojaspierce M, Yan X L, Blair M W, Pedraza F, Munoz F M, Tohme J, Lynch J P. Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci, 2006, 46: 413–423 [33]Devos K M. Updating the ‘Crop Circle’. Curr Opin Plant Biol, 2005, 8: 155–162 [34]李玉京, 刘建中, 李滨, 李继云, 姚树江, 李振声. 普通小麦基因组中耐低磷胁迫特性的染色体控制. 遗传学报, 1999, 26: 529–538 Li Y J, Liu J Z, Li B, Li J Y, Yao S J, Li Z S. Chromosomal control of the tolerance to phosphorus deficiency in genome of Triticum aestivum Chinese Spring. Acta Genet Sin, 1999, 26: 529–538 (in Chinese with English abstract) [35]Versaw W K, Harrison M J. A Chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell, 2002, 14: 1751–1766 [36]Mudge S R, Rar A L, Diatloff E, Smith F W. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J, 2002, 31: 341–353 [37]Preuss C P, Huang C Y, Gilliham M, Tyerman S D. Channel-like characteristics of the low-affinity barley phosphate transporter PHT1;6 when expressed in Xenopus oocytes. Plant Physiol, 2010, 152:1431–1441 [38]Chen J, Xu L, Cai Y. QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (Zea mays L.) at two sites. Plant & Soil, 2008, 313: 251–266 [39]李利华, 邱旭华, 李香花, 王石平, 练兴明. 低磷胁迫水稻根部基因表达谱研究. 中国科学C辑: 生命科学, 2009, 39: 549–558 Li L H, Qiu X H, Li X H, Wang S P, Lian X M. The research of rice root’s gene expression profile on the condition of phosphorus deficiency stress. Sci Sin Vitae, 2009, 39: 549–558 (in Chinese) [40]Kuraparthy V, Sood S, Dhaliwal H S, Chhuneja P, Gill B S. Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet, 2007, 114: 285–294 [41]Luo Z W, Wu C I, Kearsky M J. Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection, backcross or intercross schemes. Genetics, 2002, 161: 915–929 [42]Price A H. Believe it or not, QTLs are accurate. Trends Plant Sci, 2006, 11: 213–216 [43]The International Barley Genome Sequencing Consortium. A physical, genetic and functional sequence assembly of the barley genome. Nature, 2012, 491: 711–716 |
[1] | ZHOU Jie-Qiang, ZHANG Gui-Lian, DENG Hua-Bing, MING Xing-Quan, LEI Bin, LI Fan, TANG Wen-Bang. Advantages of small grain male sterile lines in seed production for a new combination Zhuoliangyou 141 through the mixed-sowing manner [J]. Acta Agronomica Sinica, 2022, 48(2): 320-331. |
[2] | WANG Ya-Liang, ZHU De-Feng, ZHANG Yu-Ping, CHEN Ruo-Xia, XIANG Jing, CHEN Hui-Zhe, CHEN Jiang-Hua, WANG Feng. Analysis on the plant growth and yield formation of double cropping late season hybrid rice in machine transplanting with long seedling age by precision drill sowing [J]. Acta Agronomica Sinica, 2022, 48(1): 215-225. |
[3] | WANG Na, BAI Jian-Fang, MA You-Zhi, GUO Hao-Yu, WANG Yong-Bo, CHEN Zhao-Bo, ZHAO Chang-Ping, ZHANG Ling-Ping. Cloning and expression analysis of lncRNA27195 and its target gene TaRTS in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(8): 1417-1426. |
[4] | ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480. |
[5] | JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227. |
[6] | ZHOU Bu-Jin, LI Gang, JIN Gang, ZHOU Rui-Yang, LIU Dong-Mei, TANG Dan-Feng, LIAO Xiao-Fang, LIU Yi-Ding, ZHAO Yan-Hong, WANG Yi-Ning. Creation of male sterile germplasm using the partial length gene of HcPDIL5-2a in kenaf [J]. Acta Agronomica Sinica, 2021, 47(6): 1043-1053. |
[7] | ZHAO Jie, LI Shao-Ping, CHENG Shuang, TIAN Jin-Yu, XING Zhi-Peng, TAO Yu, ZHOU Lei, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, GAO Hui, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on yield and quality of dry direct seeding rice under “solo-stalk” cultivation mode [J]. Acta Agronomica Sinica, 2021, 47(6): 1162-1174. |
[8] | WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868. |
[9] | TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990. |
[10] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[11] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[12] | SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461. |
[13] | LI Jing-Lin, LI Jia-Lin, LI Xin-Peng, AN Bao-Guang, ZENG Xiang, WU Yong-Zhong, HUANG Pei-Jing, LONG Tuan. Creation and combining ability analysis of recessive genic sterile lines with a new ptc1 locus in rice [J]. Acta Agronomica Sinica, 2021, 47(11): 2173-2183. |
[14] | LU Geng,TANG Xin,LU Jun-Xing,LI Dan,HU Qiu-Yun,HU Tian,ZHANG Tao. Cloning and function analysis of a type 2 diacylglycerol acyltransferase (DGAT2) from Perilla frutescens [J]. Acta Agronomica Sinica, 2020, 46(8): 1283-1290. |
[15] | CHEN Ri-Rong,ZHOU Yan-Biao,WANG Dai-Jun,ZHAO Xin-Hui,TANG Xiao-Dan,XU Shi-Chong,TANG Qian-Ying,FU Xing-Xue,WANG Kai,LIU Xuan-Ming,YANG Yuan-Zhu. CRISPR/Cas9-mediated editing of the thermo-sensitive genic male-sterile gene TMS5 in rice [J]. Acta Agronomica Sinica, 2020, 46(8): 1157-1165. |
|