Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (03): 369-375.doi: 10.3724/SP.J.1006.2018.00369


Genetic Analysis and Molecular Characterization of a New Allelic Mutant of Vp15 Gene in Maize

Rui WANG1,2,**(), Xiu-Yan ZHANG3,**(), Yang-Song CHEN2, Yi-Cong DU2, Ji-Hua TANG1, Guo-Ying WANG2, Jun ZHENG2,*()   

  1. 1 College of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3 School of Life Science, China Agricultural University, Beijing 100193, China
  • Received:2017-08-07 Accepted:2017-11-21 Online:2018-03-12 Published:2017-12-18
  • Contact: Rui WANG,Xiu-Yan ZHANG,Jun ZHENG E-mail:18612261636@163.com;xyzhang0818@163.com;zhengjun02@caas.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2016YFD0101002) and the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences.


We identified a new maize viviparous mutant during seed reproduction, designated as vp-like4.This mutant phenotype was steadily inherited and genetically regulated by a single recessive gene. Using an F2 segregation population derived from vp-like4 and inbred line Mo17, we mapped the target gene in an interval from 173.8 to 175.6 Mb on chromosome 5 by the BSR-Seq strategy. Using genomic sequence database, we found that viviparous gene Vp15 is located in this mapping region. The maize Vp15 gene encodes the molybdopterin synthase small subunit, which is required in the process of catalyzing the reaction from carotenoid to ABA. The heterozygous plants from two independent vp15 mutants, vp15-umu1 and vp15-DR1126, were used to cross with vp-like4 heterozygous plants, showing a 3:1 segregation ratio for normal and viviparous kernels. The genomic sequence analysis revealed that vp-like4 mutant had a 60-bp deletion in the second exon and 3’-untranslated region of Vp15 gene, which is different from vp15-umu1 and vp15-DR1126 both mutated from a Mutator transponson inserting in the second exon of Vp15 gene. Further RT-PCR analysis revealed that the expression level of vp15 was significantly lower in vp-like4. Taken together, these evidences suggest that vp-like4 is a new allele mutant from vp15.

Key words: maize, viviparous, mutant, Vp15, gene mapping

Table 1

Primers used in this study"

Forward sequence (5°-3°)
Reverse sequence (5°-3°)

Fig. 1 Viviparous phenotype of vp-like4 mutant A: normal and viviparous kernels on a vp-like4 heterozygous ear at 30 days after self-pollination; B: normal and viviparous kernels on a vp-like4 heterozygous ear at 60 days after self-pollination; C: mature normal (WT) and viviparous kernels (vp). Bar = 1 cm."

Table 2

Segregation of normal and viviparous kernels on vp-like4 self-pollinated heterozygous ears"

Plant genotype
籽粒表型Kernel phenotype
正常籽粒 Normal 穗发芽籽粒 viviparous 总数 Total χ2 (3:1)
2014 海南Hainan vp-like4/+ 355 127 482 0.398
325 111 436 0.027
2016 北京Beijing vp-like4/+ 129 47 176 0.189
225 70 295 0.190

Fig. 2

Gene mapping of the vp-like4 mutant by the BSR-Seq strategy"

Fig. 3

Allelism test of vp-like4 with vp15 by heterozygous mutants A, B: viviparous kernels were respectively emerged on vp15-umu1 (A) and vp15-DR1126 (B) heterozygous ear crossed by the mixed pollen of vp-like4 heterozygous plants; C, D: viviparous kernels were emerged on vp-like4 heterozygous ear crossed by the mixed pollens of vp15-umu1 (C) and vp15-DR1126 (D) heterozygous plants."

Fig. 4

Gene structure of Vp15 and mutation site of three mutants"

Table 3

Allelism test of vp-like4 with vp15"

Parental genotype
籽粒表型 Kernel phenotype
正常籽粒Normal 穗发芽籽粒viviparous 总数Total χ2 (3:1)
vp-like4/+ × vp15-umu1/+ 217 68 285 0.141
vp-like4/+ ×vp15-DR1126/+ 123 40 163 0.002
vp15-DR1126/+ ×vp-like4/+ 262 83 345 0.116
vp15-umu1/+ ×vp-like4/+ 239 84 323 0.124

Fig. 5

Gene expression levels of Vp15 in the normal (WT) and viviparous (vp) kernels of three mutants, vp-like4, vp15-umu1, and vp15-DR1126, by quantitative real-time PCR analysis"

[1] Mares D, Mrva K, Cheong J, Williams K, Watson B, Storlie E, Zou Y.A QTL located on chromosome 4A associated with dormancy in white-and red-grained wheats of diverse origin.Theor Appl Genet, 2005, 111: 1357-1364
[2] Lohwasser U, Röder M S, Börner A.QTL mapping of the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.). Euphytica, 2005, 143: 247-249
[3] Yang Y, Zhao X L, Xia L Q, Chen X M, Xia, X C, Yu Z, Röder M. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats.Theor Appl Genet, 2007, 115: 971-980
[4] Fang J, Chai C, Qian Q, Li C, Tang J, Sun L, Huang Z J, Zhang Y, Chu C.Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice.Plant J, 2008, 54: 177-189
[5] Gubler F, Millar A A, Jacobsen J V.Dormancy release, ABA and pre-harvest sprouting.Curr Opin Plant Biol, 2005, 8: 183-187
[6] Hable W E, Oishi K K, Schumaker K S. Viviparous-5 encodes phytoenedesaturase, an enzyme essential for abscisic acid (ABA) accumulation and seed development in maize. Mol Gen Genet, 1998, 257: 167-176
[7] Singh M, Lewis P E, Hardeman K, Bai L, Rose J K, Mazourek M, Brutnell T P.Activator mutagenesis of the pink scutellum1/ viviparous7 locus of maize. Plant Cell, 2003, 15: 874-884
[8] Suzuki M, Latshaw S, Sato Y, Settles A M, Koch K E, Hannah L C, McCarty D R. The maizeViviparous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development. Plant Physiol, 2008, 146: 1193-1206
[9] Porch T G, Tseung C W, Schmelz E A, Mark Settles, A. The maize Viviparous10/Viviparous13 locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis. Plant J, 2006, 45: 250-263
[10] Maluf M P, Saab I N, Wurtzel E T, Mark Settles A.The viviparous12 maize mutant is deficient in abscisic acid, carotenoids, and chlorophyll synthesis. J Exp Bot, 1997, 48: 1259-1268
[11] Schwartz S H, Tan B C, Gage D A, Zeevaart J A, McCarty D R. Specific oxidative cleavage of carotenoids by VP14 of maize. Science, 1997, 276: 1872-1874
[12] Suzuki M, Mark Settles A, Tseung C W, Li Q B, Latshaw S, Wu S, McCarty D R. The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Plant J, 2006, 45: 264-274
[13] Li F, Murillo C, Wurtzel E T.Maize Y9 encodes a product essential for 15-cis-ζ-carotene isomerization.Plant Physiol, 2007, 144: 1181-1189
[14] Suzuki M, Kao C Y, Cocciolone S, McCarty D R. Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots. Plant J, 2001, 28: 409-418
[15] Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E.Integration of abscisic acid signalling into plant responses.Plant Biol, 2006, 8: 314-325
[16] Sagi M, Fluhr R, Lips S H.Aldehyde oxidase and xanthine dehydrogenase in aflacca tomato mutant with deficient abscisic acid and wilty phenotype.Plant Physiol, 1999, 120: 571-578
[17] Schwartz S H, Leon-Kloosterziel K M, Koornneef M, Zeevaart J A. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol, 1997, 114: 161-166
[18] Bittner F, Oreb M, Mendel R R.ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem, 2001, 276: 40381-40384
[19] Xiong L, Ishitani M, Lee H, Zhu J K.The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell, 2001, 13: 2063-2083
[20] Mendel R R, Hänsch R.Molybdoenzymes and molybdenum cofactor in plants.J Exp Bot, 2002, 53: 1689-1698
[21] Liu S, Yeh C T, Tang H M, Nettleton D, Schnable P S.Gene mapping via bulked segregant RNA-Seq (BSR-Seq).PLoS One, 2012, 7: e36406
[22] 王关林, 方宏筠. 植物基因工程(第2版). 北京: 科学出版社, 2002. pp 742-744
Wang G L, Fang H J. Plant Genetic Engineering, 2nd edn. Beijing: Science Press, 2002. pp 742-744 (in Chinese)
[23] Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen A H, Nielsen K L, Andersen S U.SHOREmap: simultaneous mapping and mutation identification by deep sequencing.Nat Methods, 2009, 6: 550-551
[24] 杨守萍, 盖钧镒, 邱家驯. 大豆雄性不育突变体 NJ89-1核雄性不育基因的等位性测验. 作物学报, 2003, 29: 372-378
Yang S P, Gai J Y, Qiu J X.Allelism tests of the male sterile gene of the mutant NJ89-1 in soybeans.Acta Agron Sin, 2003, 29: 372-378 (in Chinese with English abstract)
[25] Lyu H K, Zheng J, Wang T Y, Fu J, Huai J, Min H W, Wang G Y.The maize d2003, a novel allele of VP8, is required for maize internode elongation. Plant Mol Biol, 2014, 84: 243-257
[26] Rudolph M J, Wuebbens M M, Turque O, Rajagopalan K V, Schindelin H.Structural studies of molybdopterin synthase provide insights into its catalytic mechanism.J Biol Chem, 2003, 278: 14514-14522
[27] Rudolph M J, Johnson J L, Rajagopalan K V, Kisker C.The 1.2 Å structure of the human sulfite oxidase cytochrome b5 domain.Acta Crystall Sect D: Biol Crystall, 2003, 59: 1183-1191
[28] Stallmeyer B, Drugeon G, Reiss J, Haenni A L, Mendel R R.Human molybdopterin synthase gene: identification of a bicistronic transcript with overlapping reading frames.Am J Human Genet, 1999, 64: 698-705
[29] Leimkühler S, Freuer A, Araujo J A S, Rajagopalan K V, Mendel R R. Mechanistic studies of human molybdopterin synthase reaction and characterization of mutants identified in group B patients of molybdenum cofactor deficiency.J Biol Chem, 2003, 278: 26127-26134
[30] Rudolph M J, Wuebbens M M, Rajagopalan K V, Schindelin H.Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nat Structural & Mol Biol, 2001, 8: 42
[1] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[2] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[3] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[4] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[5] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[6] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[7] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[8] DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885.
[9] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[10] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[11] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[12] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[13] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[14] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[15] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
Full text



No Suggested Reading articles found!