Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (7): 966-976.doi: 10.3724/SP.J.1006.2018.00966

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Efficient Separation and Identification of High Molecular Weight Glutenin Subunits by HPCE

Wei-Dong WANG,Xiang GAO(),Dan-Yang ZHAO   

  1. College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2017-11-24 Accepted:2018-03-26 Online:2018-07-10 Published:2018-07-19
  • Contact: Xiang GAO E-mail:gx@nwsuaf.edu.cn
  • Supported by:
    This study was supported by the China Agriculture Research System (CARS-3-2-47) and the National High Technology Research and Development Program of China (2011AA100501).

Abstract:

High molecular weight glutenin subunit (HMW-GS) is important for processing quality of wheat. High performance capillary electrophoresis (HPCE) is increasingly used in the work of separation and identification due to its advantages of small sample, rapidness and high precision. However, this technique has been seldom used in wheat HMW-GS study and its separation system needs improvement in analytical speed and discernibility. On the basis of HMW-GS identification with SDS-PAGE and molecular markers, an high-efficiency separation system of HPCE was set up using Chinese Spring as the standard. The system components (pH 2.5) were 75 mmol L -1 IDA, 0.05% HPMC, and 15% ACN. The electrophoresis parameters were 25 μm of inner diameter of the capillary, 200 nm of detection wavelength, 20 kV of separation voltage, and 30°C of operating temperature. Using mixed injection method, the standard spectrums were obtained for 18 subunits. Their migration order was 1Dy12→ 1Dy10→ 1By9→ 1By8→ 1By18→ 1By16→ 1By20→ 1Bx17→ 1Bx20→ 1Bx13→ 1Bx6→ 1Bx7→ 1Ax2*→ 1Ax1→ 1Dx5→ 1Dx4→ 1Dx3→ 1Dx2, and standard peak time of these subunits was 9.39, 9.69, 10.30, 11.70, 11.89, 12.09, 12.22, 12.36, 12.62, 12.83, 13.08, 13.18, 13.50, 13.73, 14.04, 14.24, 14.46, and 14.73 min, respectively. The relative standard deviation was smaller than 0.2%. The y-type and x-type subunits appeared in the phases of 9.39-12.36 min and 12.36-14.76 min, respectively, between which there was 1Bx17 as the boundary. These results indicate that the HPCE separation system is applicable in rapid identification of HMW-GS in wheat germplasm resources when we simultaneously consider migration order, standard peak time, and HPCE spectrum.

Key words: wheat, high molecular weight glutenin subunit, HPCE spectrum, high efficiency separation system of HPCE

Table 1

Molecular markers of HMW-GS"

亚基
Subunit
标记序列
Sequence (5′→3′)
片段大小
Size of
fragment (bp)
参考文献
Reference
1Ax1 F: TCACCGACAGTCCACCGA; R: ACCAAGCGAGCTGCAGAG 2532 Bustos et al. [16]
Null F: ACGTTCCCCTACAGGTACTA; R: TATCACTGGCTAGCCGACAA 920 Lafiandra et al. [17]
1Ax2* F: ATGACTAAGCGGTTGGTTCTT; R: ACCTTGCTCCCCTTGTCTTT 1319 Ma et al. [18]
1Bx6 F: CACTGAGATGGCTAAGCGCC; R: GCCTTGGACGGCACCACAGG 321 Schwarz et al. [19]
1Bx7/1Bx17 F: CGCAACAGCGAGGACAATT; R: TGGTCCGTCACTATCTTGAGA 766/669 Ma et al. [18]
1Bx13
F: ATGAGCTAAGCGCGCTGGTCCTCTTTG;
R: CTATCACTGCCTGGTCCGACAATGCG
900
Pang and Zhang [20]
1Bx20 F: CCTCAGCATGCAAACATGCAGC; R: CTGAAACCTTTGGCCAGTCATGTC 800 Butow et al. [21]
1By8 F: TTAGCGCTAAGTGCCGTCT; R: TTGTCCTATTTGCTGCCCTT 527 Lei et al. [22]
1By9 F: TTCTCTGCATCAGTCAGGA; R: AGAGAAGCTGTGTAATGCC 707 Lei et al. [22]
1By16 F: GCAGTACCCAGCTTCTCAA; R: CCTTGTCTTGTTTGTTGCC 3 fragments Lei et al. [22]
1By18 F: CAACAAAACGGGCGTTGT; R: CAACAAAACGGGCGTTGT 365 Liang et al. [23]
1Dx2/1Dx5 F: GGGACAATACGAGCAGCAAA; R: CTTGTTCCGGTTGTTGCCA 299/281 Liu et al. [24]
1Dy10/1Dy12 F: GTTGGCCGGTCGGCTGCCATG; R: TGGAGAAGTTGGATAGTACC 576/612 Ahmad [25]

Fig. 1

Identification of the subunit composition and coding genes of Glu-1 loci in wheatA: analysis of SDS-PAGE; B-F: identification of HMW-GS by molecular markers. M: Trans 2k plus DNA marker; 1: Chinese Spring; 2: Xinong 979; 3: Jinan 13; 4: Jinmai 47; 5: Jimai 4; 6: Yumai 41; 7: Yannong 19; 8: Laizhou 137; 9: Lumai 23; 10: Aikang 58; 11: Yumai 50; 12: Zhengmai 366."

Table 2

Composition of HMW-GS of material varieties"

品种 Variety Glu-1A Glu-1B Glu-1D
中国春 Chinese Spring null 7+8 2+12
西农979 Xinong 979 1 7+8 2+12
济南13 Jinan 13 1 7+9 2+12
晋麦47 Jinmai 47 null 7+9 3+12
济麦4号 Jimai 4 1 13+16 4+12
豫麦41 Yumai 41 1 20x+20y 5+10
烟农19 Yannong 19 1 17+18 4+12
莱州137 Laizhou 137 1 6+8 5+10
鲁麦23 Lumai 23 null 20 2+12
矮抗58 Aikang 58 1 7+8 4+12
豫麦50 Yumai 50 2* 7+9 2+12
郑麦366 Zhengmai 366 1 7+8 5+10

Fig. 2

Effect of constituent concentration and pH values of buffer on electrophoresis separation of HMW-GSA: effect of different pH on the electrophoresis separation, the constituents of the buffer were 100 mmol L-1 IDA + 0.05% HPMC + 20% ACN. B: results of two successive electrophoretic separation under different concentrations of IDA, the other constituents of the buffer were 0.05% HPMC + 20% ACN, the pH was 2.5. C: effect of different concentrations of HPMC on the electrophoresis separation, the other constituents of the buffer were 75 mmol L-1 IDA + 20% ACN, the pH was 2.5. D: effect of different concentrations of ACN on the electrophoresis separation, the other constituents of the buffer were 75 mmol L-1 IDA + 0.05% HPMC, the pH was 2.5. Electrophoresis parameters of A-D: the inner diameter of the capillary was 50 μm; the detection wavelength was 214 nm; the separation voltage was 15 kV; the operating temperature was 25 °C. The arrow indicates the position of the secondary peak."

Fig. 3

HPCE profile before (A) and after (B) optimization of electrophoresis parametersBuffer constituents: 75 mmol L-1 IDA + 0.05% HPMC + 15% ACN, pH 2.5. Electrophoresis parameters were 50 μm of the inner diameter of capillary, 214 nm of detection wavelength, 15 kV of separation voltage, and 25°C of operating temperature before optimization and 25 μm of the inner diameter of capillary, 200 nm of the detection wavelength, 20 kV of separation voltage, and 30°C of operating temperature after optimization."

Fig. 4

Thirty separations of HMW-GS of Chinese Spring by HPCEThe curves correspond to the 1st, 5th, 10th, 15th, 12th, 25th, and 30th electrophoresis separation, respectively."

Fig. 5

Separation profile of HPCE (A) and RP-HPLC (B)Chinese Spring HMW-GS was the standard. Nomenclature of characteristic peaks in the RP-HPLC profile follows the descriptions of Yan et al. [34]"

Table 3

Relative standard deviation and peak time of HMW-GS"

亚基
Subunit
HPCE RP-HPLC
出峰时间
Peak time (min)
相对标准偏差
Relative standard deviation (%)
出峰时间
Peak time (min)
相对标准偏差
Relative standard deviation (%)
1Dx2 14.73±0.02 0.12 22.31±0.11 0.40
1Bx7 13.18±0.01 0.07 28.42±0.22 0.63
1By8 11.70±0.01 0.14 21.86±0.21 0.78
1Dy12 9.39±0.02 0.18 15.91±0.18 0.92

Fig. 6

HPCE spectrum of different HMW-GS (mixed injection)A: Chinese Spring (null, 7+8, 2+12); B: Chinese Spring + Xinong 979 (1, 7+8, 2+12); C: Chinese Spring + Xinong 979 + Jinan 13 (1, 7+9, 2+12); D: Chinese Spring + Xinong 979 + Jinan 13; E: Chinese Spring + Xinong 979 + Jinan 13 + Yumai 50 (2*, 7+9, 2+12); F: Chinese Spring + Xinong 979 + Jinan 13 + Jinmai 47 (null, 7+9, 3+12); G: Chinese Spring; H: Chinese Spring + Zhengmai 366 (1, 7+8, 5+10); I: Chinese Spring + Zhengmai 366 + Yumai 41 (1, 20x+20y, 5+10); J: Chinese Spring + Zhengmai 366; K: Chinese Spring + Zhengmai 366 + Laizhou 137 (1, 6+8, 5+10); L: Chinese Spring + Zhengmai 366+Laizhou 137+Lumai 23 (Null, 20, 2+12). M: Chinese Spring + Xinong 979; N: Chinese Spring + Xinong 979+Aikang 58 (1, 7+8, 4+12); O: Chinese Spring + Xinong 979+Aikang 58+Jimai 4 (1, 13+16, 4+12); P: Chinese Spring + Xinong 979 + Aikang 58 + Yannong 19 (1, 17+18, 4+12)."

Table 4

Peak time of eighteen HMW-GSs"

Glu-1位点
Glu-1 locus
亚基类型
Type of subunit
亚基
Subunit
出峰时间
Peak time (min)
Glu-1A x-type 1Ax1 13.73
1Ax2* 13.50
Glu-1B x-type 1Bx6 13.08
1Bx7 13.18
1Bx13 12.83
1Bx20 12.62
1Bx17 12.36
y-type 1By8 11.70
1By9 10.30
1By20 12.22
1By16 12.09
1By18 11.89
Glu-1D x-type 1Dx2 14.73
1Dx3 14.46
1Dx4 14.24
1Dx5 14.04
y-type 1Dy10 9.69
1Dy12 9.39
[1] Payne P I . Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu Rev Plant Physiol, 1987,38:141-153
doi: 10.1146/annurev.pp.38.060187.001041
[2] Shewry P R, Halford N G, Tatham A S . High molecular weight subunits of wheat glutenin. J Cereal Sci, 1992,15:105-120
doi: 10.1016/S0733-5210(09)80062-3
[3] Payne P I, Lawrence G J . Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res Commun, 1983,11:29-35
[4] Visioli G, Comastri A, Imperiale D, Paredi G, Faccini A, Marmiroli N . Gel-based and gel-free analytical methods for the detection of HMW-GS and LMW-GS in wheat flour. Food Analyt Methods, 2016,9:469-476
doi: 10.1007/s12161-015-0218-3
[5] Janni M, Cadonici S, Pignone D, Marmiroli N . Survey and new insights in the application of PCR-based molecular markers for identification of HMW-GS at the Glu-B1 locus in durum and bread wheat. Plant Breed, 2017,136:467-473
doi: 10.1111/pbr.12506
[6] Schalk K, Lexhaller B, Koehler P, Katharina A S . Isolation and characterization of gluten protein types from wheat, rye, barley and oats for use as reference materials. PLoS One, 2017,12:e0172819
doi: 10.1371/journal.pone.0172819 pmid: 5325591
[7] Jang Y R, Beom H R, Altenbach S B, Lee M K, Lim S H, Lee J Y . Improved method for reliable HMW-GS identification by RP-HPLC and SDS-PAGE in common wheat cultivars. Molecules, 2017,22:1055
doi: 10.3390/molecules22071055 pmid: 28672820
[8] Bietz J A, Schmalzried E . Capillary electrophoresis of wheat gliadin: initial studies and application to varietal identification. Lwt-food Sci Technol, 1995,28:174-184
doi: 10.1016/S0023-6438(95)91346-7
[9] Werner W E, Wiktorowicz J E, Kasarda D D . Wheat varietal identification by capillary electrophoresis of gliadins and high molecular weight glutenin subunits. Cereal Chem, 1994,71:397-402
doi: 10.1021/bp00029a017
[10] Werner W E . Ferguson plot analysis of high molecular weight glutenin subunits by capillary electrophoresis. Cereal Chem, 1995,72:248-251
doi: 10.1021/bp00033a016
[11] Sutton K H, Bietz J A . Variation among high molecular weight subunits of glutenin detected by capillary electrophoresis. J Cereal Sci, 1997,25:9-16
doi: 10.1006/jcrs.1996.9999
[12] Bean S R, Lookhart G L . Faster capillary electrophoresis separation of wheat proteins through modifications to buffer composition and sample handling. Electrophoresis, 1998,19:3190-3198
doi: 10.1002/elps.1150191823 pmid: 9932814
[13] Jang Y R, Beom H R, Altenbach S B, Lee M K, Lim S H, Lee J Y . Improved method for reliable HMW-GS identification by RP-HPLC and SDS-PAGE in common wheat cultivars. Molecules, 2017,22:1055
doi: 10.3390/molecules22071055 pmid: 28672820
[14] Lee J Y, Kim Y T, Kim H J, Lee J H, Kang C S, Lim S H, Ha S H, Ahn S N, Kim Y M . Characterization of the HMW-GS 1DX2.2 gene and its protein in a common Korean wheat variety. SABRAO J Breed & Genet, 2013,45:159-168
doi: 10.1116/1.585038
[15] Siegel C S, Stevenson F O, Zimmer E A . Evaluation and comparison of FTA card and CTAB DNA extraction methods for non-agricultural taxa. Appl Plant Sci, 2017,5:1600109
doi: 10.3732/apps.1600109
[16] Bustos A D, Rubio P, Jouve N . Molecular characterisation of the inactive allele of the gene Glu-A1 and the development of a set of AS-PCR markers for HMW glutenins of wheat . Theor Appl Genet, 2000,100:1085-1094
doi: 10.1007/s001220051390
[17] Lafiandra D, Tucci G F, Pavoni A, Turchetta T, Margiotta B . PCR analysis of x- and y-type genes present at the complex Glu-A1 locus in durum and bread wheat. Theor Appl Genet, 1997,94:235-240
doi: 10.1007/s001220050405
[18] Ma W, Zhang W, Gale K R . Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica, 2003,134:51-60
doi: 10.1023/A:1026191918704
[19] Schwarz G, Felsenstein F G, Wenzel G . Development and validation of a PCR-based marker assay for negative selection of the HMW glutenin allele Glu-B1-1d (Bx-6) in wheat. Theor Appl Genet, 2004,109:1064-1069
doi: 10.1007/s00122-004-1718-5 pmid: 15175854
[20] Pang B S, Zhang X Y . Isolation and molecular characterization of high molecular weight glutenin subunit genes 1Bx13 and 1By16 from hexaploid wheat. J Integr Plant Biol, 2008,50:329-337
doi: 10.1111/j.1744-7909.2007.00573.x pmid: 18713365
[21] Gianibelli M C . Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC. Theor Appl Genet, 2004,109:1525-1535
doi: 10.1007/s00122-004-1776-8 pmid: 15340686
[22] Lei Z S, Gale K R, He Z H, Gianibelli C, Larroque O, Xia X C, Butow B J, Ma W . Y-type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. J Cereal Sci, 2006,43:94-101
doi: 10.1016/j.jcs.2005.08.003
[23] Liang X, Zhen S, Han C, Wang C, Li X H, Ma W J, Yan Y M . Molecular characterization and marker development for hexaploid wheat-specific HMW glutenin subunit 1By18 gene. Mol Breed, 2015,35:221
doi: 10.1007/s11032-015-0406-2
[24] Liu S, Chao S, Anderson J A . New DNA markers for high molecular weight glutenin subunits in wheat. Theor Appl Genet, 2008,118:177-183
doi: 10.1007/s00122-008-0886-0 pmid: 18797838
[25] Ahmad M . Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theor Appl Genet, 2000,101:892-896
doi: 10.1007/s001220051558
[26] Robertson G H, Hurkman W, Anderson O D, Tanaka C K, Cao T K, Orts W J . Differences in alcohol-soluble protein from genetically altered wheat using capillary zone electrophoresis, one- and two-dimensional electrophoresis, and a novel gluten matrix association factor analysis. Cereal Chem, 2013,90:13-23
doi: 10.1094/CCHEM-10-11-0123
[27] Bean S R, Lookhart G L . Ultrafast capillary electrophoretic analysis of cereal storage proteins and its applications to protein characterization and cultivar differentiation. J Agric Food Chem, 2000,48:344-353
doi: 10.1021/jf990962t pmid: 10691639
[28] Yan Y, Yu J, Jiang Y, Hu Y, Cai M, Hsam S L, Zeller F J . Capillary electrophoresis separation of high molecular weight glutenin subunits in bread wheat (Triticum aestivum L.) and related species with phosphate-based buffers. Electrophoresis, 2003,24:1429-1436
doi: 10.1002/elps.200390184 pmid: 12731030
[29] 余建中 . 小麦醇溶蛋白和高分子量谷蛋白亚基高效毛细管电泳研究. 首都师范大学硕士学位论文, 北京, 2002
Yu J Z . Studies on High Performance Capillary Electrophoresis of Gliadins and High Molecular Weight Glutenin Subunits (HMW-GS) in Wheat (Triticum aestivum L.). MS Thesis of Capital Normal University, Beijing, China, 2002 (in Chinese with English abstract)
[30] Dong K, Hao C, Wang A, Cai M, Yan Y . Characterization of HMW glutenin subunits in bread and tetraploid wheats by reversed-phase high-performance liquid chromatography. Cereal Res Commun, 2009,37:65-73
doi: 10.1556/CRC.37.2009.1.8
[31] Zhu J, Khan K . Separation and quantification of HMW glutenin subunits by capillary electrophoresis. Cereal Chem, 2001,78:737-742
doi: 10.1094/CCHEM.2001.78.6.737
[32] Yan Y M, Jiang Y, Sun M M, Yu J Z, Xiao Y H, Zheng J Q, Hu Y K, Cai M H, Li Y X, Hsam S L K, Zeller F J, . Rapid identification of HMW glutenin subunits from different hexaploid wheat species by acidic capillary electrophoresis. Cereal Chem, 2004,81:561-566
doi: 10.1094/CCHEM.2004.81.5.561
[33] Salmanowicz B P, Langner M, Franaszek S . Charge-based characterisation of high-molecular-weight glutenin subunits from common wheat by capillary isoelectric focusing. Talanta, 2014,129:9-14
doi: 10.1016/j.talanta.2014.04.055 pmid: 25127558
[34] Yan X, Liu W, Yu Z T, Han C X, Zeller F J, Hsam S L K, Yan Y M, . Rapid separation and identification of wheat HMW glutenin subunits by UPLC and comparative analysis with HPLC. Aust J Crop Sci, 2014,8:140-147
[35] Seyrek E, Hattori T, Dubin P L. Frontal analysis continuous capillary electrophoresis for protein-polyelectrolyte binding studies. In: Strege M A, Lagu A L. Capillary Electrophoresis of Proteins and Peptides, Human Press, 2004,276:217-228
doi: 10.1021/pr040035o
[36] 邓志英, 田纪春, 刘现鹏 . 不同高分子量谷蛋白亚基组合的小麦籽粒蛋白组分及其谷蛋白大聚合体的积累规律. 作物学报, 2004,30:481-486
doi: 10.3321/j.issn:0496-3490.2004.05.014
Deng Z Y, Tian J C, Liu X P . Accumulation regularity of protein components in wheat cultivars with different HMW-GS. Acta Agron Sin, 2004,30:481-486 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2004.05.014
[37] 王妍妍, 郑彩霞 . 高效毛细管电泳在分离植物蛋白质中的应用. 吉林林业科技, 2010,39(4):5-9
doi: 10.3969/j.issn.1005-7129.2010.04.002
Wang Y Y, Zheng C X . The application of capillary electrophoresis in the analysis of plant protein. J Jilin For Sci Technol, 2010,39(4):5-9 (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-7129.2010.04.002
[38] Machiste E O, Buckton G . Dynamic surface tension studies of hydroxypropylmethyl cellulose film-coating solutions. Int J Pharm, 1996,145:197-201
doi: 10.1016/S0378-5173(96)04769-2
[39] Stefan A R, Dockery C R, Nieuwland A A, Roberson S N, Baguley B M, Hendrix J E, Morgan S L . Forensic analysis of anthraquinone, azo, and metal complex acid dyes from nylon fibers by micro-extraction and capillary electrophoresis. Analyt Bioanalyt Chem, 2009,394:2077-2085
doi: 10.1007/s00216-009-2875-9 pmid: 19543716
[40] Gao L, Ma W J, Chen J, Wang K, Li J, Wang S L, Bekes F, Apples R, Yan Y M . Characterization and comparative analysis of wheat high molecular weight glutenin subunits by SDS-PAGE, RP-HPLC, HPCE, and MALDI-TOF-MS. J Agric Food Chem, 2010,58:2777-2786
doi: 10.1016/S0304-3975(97)00126-6 pmid: 20146422
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[6] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[7] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[8] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[9] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[10] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[11] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[12] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[13] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[14] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[15] LUO Jiang-Tao, ZHENG Jian-Min, PU Zong-Jun, FAN Chao-Lan, LIU Deng-Cai, HAO Ming. Chromosome transmission in hybrids between tetraploid and hexaploid wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!