Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (11): 1661-1672.doi: 10.3724/SP.J.1006.2018.01661
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
Lian-Cheng WU,Pei LI,Lei TIAN,Shun-Xi WANG,Ming-Na LI,Yu-Yu WANG,Sai WANG,Yan-Hui CHEN()
[1] |
Quirino B F, Noh Y S, Himelblau E, Amasino R M . Molecular aspects of leaf senescence. Trends Plant Sci, 2000,5:278-282
doi: 10.1016/S1360-1385(00)01655-1 pmid: 10871899 |
[2] |
Lim P O, Kim H J, Nam H G . Leaf senescence. Annu Rev Plant Biol, 2007,58:115-136
doi: 10.1146/annurev.arplant.57.032905.105316 |
[3] |
Wang Y, Li B, Du M, Eneji A E, Wang B M, Duan L S, Li Z H, Tian X L . Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency. J Exp Bot, 2012,63:5887-5901
doi: 10.1093/jxb/ers238 |
[4] | Breeze E, Harrison E, Mchattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim Y S, Penfold C A, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore J D, Wild D L, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V . High-resolution temporal profiling of transcripts duringArabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell, 2011,23:873-894 |
[5] | Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D . Themolecular analysis of leaf senescence: a genomics approach. Plant Biotechnol J, 2003,1:3-22 |
[6] |
Wu X Y, Hu W J, Luo H, Xia Y, Zhao Y, Wang L D, Zhang L M, Luo J C, Jing H C . Transcriptome profiling of developmental leaf senescence in sorghum (Sorghum bicolor ). Plant Mol Biol, 2016,92:555-580
doi: 10.1007/s11103-016-0532-1 pmid: 27586543 |
[7] |
张子山, 李耕, 高辉远, 刘鹏, 杨程, 孟祥龙, 孟庆伟 . 玉米持绿与早衰品种叶片衰老过程中光化学活性的变化. 作物学报, 2013,39:93-100
doi: 10.3724/SP.J.1006.2013.00093 |
Zhang Z S, Li G, Gao H Y, Liu P, Yang C, Meng X L, Meng Q W . Changes of photochemistry activity during senescence of leaves in stay greenand quick-leaf-senescence inbred lines of maize. Acta Agron Sin, 2013,39:93-100 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00093 |
|
[8] |
黄雅敏, 朱杉杉, 赵志超, 蒲志刚, 刘天珍, 罗胜, 张欣 . 水稻早衰突变体psls1的基因定位及克隆. 作物学报, 2017,43:51-62
doi: 10.3724/SP.J.1006.2017.00051 |
Huang Y M, Zhu S S, Zhao Z C, Pu Z G, Liu T Z, Luo S, Zhang X . Gene mapping and cloning of a premature leaf senescence mutant psls1 in rice. Acta Agron Sin, 2017,43:51-62 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00051 |
|
[9] | 肖艳华, 陈新龙, 杜丹, 邢亚迪, 张天泉, 祝毛迪, 刘明明, 朱小燕, 桑贤春, 何光华 . 水稻叶片淀粉积累及早衰突变体esl9的鉴定与基因定位. 作物学报, 2017,43:473-482 |
Xiao Y H, Chen X L, Du D, Xing Y D, Zhang T Q, Zhu M D, Liu M M, Zhu X Y, Sang X C, He G H . Identification and gene mapping of starch accumulation and early senescence leaf mutant esl9 in rice. Acta Agron Sin, 2017,43:473-482 (in Chinese with English abstract) | |
[10] |
Ceppi D, Sala M, Gentinetta E, Verderio A, Motto M . Genotype-dependent leaf senescence in maize: inheritance and effects of pollination-prevention. Plant Physiol, 1987,85:720-725
doi: 10.1104/pp.85.3.720 pmid: 16665767 |
[11] |
Zhang W Y, Xu Y C, Li W L, Yang L, Yue X, Zhang X S, Zhao X Y . Transcriptional analyses of natural leaf senescence in maize. PLoS One, 2014,9:e115617
doi: 10.1371/journal.pone.0115617 pmid: 25532107 |
[12] | Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim P O, Nam H G, Lin J F, Wu S H, Swidzinski J, Ishizaki K, Leaver C J . Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence inArabidopsis.Plant J, 2005,42:567-585 |
[13] | van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge U, Kunze R . Transcription analysis ofArabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol, 2006,141:776-792 |
[14] |
Liang C Z, Wang Y Q, Zhu Y N, Tang J Y, Hu B, Liu L C, Ou S J, Wu H K, Sun X H, Chu J F, Chu C C . OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA, 2014,111:10013-10018
doi: 10.1073/pnas.1321568111 |
[15] |
Penfold C A, Buchanan-Wollaston V . Modelling transcriptional networks in leaf senescence. J Exp Bot, 2014,65:3859-3873
doi: 10.1093/jxb/eru054 pmid: 24600015 |
[16] |
Zhou Y, Liu L, Huang W F, Yuan M, Zhou F, Li X H, Lin Y J . Overexpression ofOsSWEET5 in rice causes growth retardation and precocious senescence. PLoS One, 2014,9:e94210
doi: 10.1371/journal.pone.0094210 pmid: 24709840 |
[17] | Liu J, Ji Y B, Zhou J, Xing D . Phosphatidylinositol 3-kinase promotes V-ATPase activation and vacuolar acidification and delays methyl jasmonate-induced leaf senescence. Plant Physiol, 2016,170:1714-1731 |
[18] |
Zhao Y, Chan Z L, Gao J H, Xing L, Cao M J, Yu C M, Hu Y L, You J, Shi H T, Zhu Y F, Gong Y H, Mu Z X, Wang H Q, Deng X, Wang P C, Bressan R A, Zhu J K . ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci USA, 2016,113:1949-1954
doi: 10.1073/pnas.1522840113 pmid: 26831097 |
[19] |
Mao C J, Lu S C, Lv B, Zhang B, Shen J B, He J M, Luo L Q, Xi D D, Chen X, Ming F . A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol, 2017,174:1747-1763
doi: 10.1104/pp.17.00542 pmid: 28500268 |
[20] | Woo H R, Koo H J, Kim J, Jeong H, Yang J O, Lee I H, Jun J H, Choi S H, Park S J, Kang B, Kim Y W, Phee B K, Kim J H, Seo C, Park C, Kim S C, Park S, Lee B, Lee S, Hwang D, Nam H G, Lim P O . Programming of plant leaf senescence with temporal and inter-organellar coordination of transcriptome inArabidopsis.Plant Physiol, 2016,171:452-467 |
[21] |
He P, Osaki M, Takebe M, Shinano T, Wasaki J . Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J Exp Bot, 2005,56:1117-1128
doi: 10.1093/jxb/eri103 |
[22] |
Mortazavi A, Williams B A, Mccue K, Schaeffer L, Wold B . Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008,5:621-628
doi: 10.1038/nmeth.1226 pmid: 18516045 |
[23] |
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L . Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protocols, 2012,7:562-578
doi: 10.1038/nprot.2012.016 |
[24] |
Usadel B, Nagel A, Thimm O, Redestig H, Blaesing O E, Palacios-Rojas N, Selbig J, Hannemann J, Piques M C, Steinhauser D, Scheible W R, Gibon Y, Morcuende R, Weicht D, Meyer S, Stitt M . Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of coresponding genes, and comparison with known responses. Plant Physiol, 2005,138:1195-1204
doi: 10.1104/pp.105.060459 |
[25] |
Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCt Method . Methods, 2001,25:402-408
doi: 10.1006/meth.2001.1262 |
[26] |
Long S P, Zhu X G, Naidu S L, Ort D R . Can improvement in photosynthesis increase crop yields. Plant Cell Environ, 2006,29:315-330
doi: 10.1111/pce.2006.29.issue-3 |
[27] |
Gregersen P L, Culetic A, Boschian L, Krupinska K . Plant senescence and crop productivity. Plant Mol Biol, 2013,82:603-622
doi: 10.1007/s11103-013-0013-8 |
[28] |
Vellai T, Takacs-Vellai K, Sass M, Klionsky D J . The regulation of aging: does autophagy underlie longevity. Trends Cell Biol, 2009,19:487-494
doi: 10.1016/j.tcb.2009.07.007 pmid: 2755611 |
[29] |
Yu S M, Lo S F, Ho T D . Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci, 2015,20:844-857
doi: 10.1016/j.tplants.2015.10.009 pmid: 26603980 |
[30] |
Yadav U P, Ivakov A, Feil R, Duan G Y, Walther D, Giavalisco P, Piques M, Carillo P, Hubberten H M, Stitt M, Lunn J E . The sucrose-trehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by Tre6P. J Exp Bot, 2014,65:1051-1068
doi: 10.1093/jxb/ert457 |
[31] |
Figueroa C M, Lunn J E . A tale of two sugars: trehalose 6-phosphate and sucrose. Plant Physiol, 2016,172:7
doi: 10.1104/pp.16.00417 pmid: 27482078 |
[32] |
Wingler A, Delatte T L, O’hara L E, Primavesi L F, Jhurreea D, Paul M J, Schluepmann H . Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Plant Physiol, 2012,158:1241-1251
doi: 10.1104/pp.111.191908 |
[33] | Song Y W, Xiang F Y, Zhang G Z, Miao Y C, Miao C, Song C P . Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset inArabidopsis thaliana.Front Plant Sci, 2016, doi: 10.3389/fpls.2016.00181 |
[34] |
Koyama T, Nii H, Mitsuda N, Ohta M, Kitajima S, Ohme-Takagi M, Sato F . A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence. Plant Physiol, 2013,162:991-1005
doi: 10.1104/pp.113.218115 |
[35] |
Koyama T . The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. Front Plant Sci, 2014,5:650
doi: 10.3389/fpls.2014.00650 pmid: 4243489 |
[36] |
Dong H Z, Niu Y H, Li W J, Zhang D M . Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. J Exp Bot, 2008,59:1295-1304
doi: 10.1093/jxb/ern035 |
[37] | Jiang Y J, Liang G, Yang S Z, Yu D Q . Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell, 2014,26:230-245 |
[38] | Lee H N, Lee K H, Kim C S . Abscisic acid receptor PYRABACTIN RESISTANCE-LIKE 8, PYL8, is involved in glucose response and dark-induced leaf senescence in Arabidopsis. Biochem Biophy Res Commun, 2015,463:24-28 |
[39] |
Kim H J, Nam H G, Lim P O . Regulatory network of NAC transcription factors in leaf senescence. Curr Opin Plant Biol, 2016,33:48-56
doi: 10.1016/j.pbi.2016.06.002 pmid: 27314623 |
[40] | Guo P R, Li Z H, Huang P X, Li B S, Shuang F, Chu J F, Guo H W . A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. Plant Cell, 2017. doi: https://doi.org/ 10.1105/tpc.17.00438 |
[1] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[4] | SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070. |
[5] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[6] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[7] | YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974. |
[8] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
[9] | SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738. |
[10] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[11] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[12] | ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192. |
[13] | YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150. |
[14] | LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62. |
[15] | ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26. |
|