Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (11): 1661-1672.doi: 10.3724/SP.J.1006.2018.01661

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Transcriptome Analysis of Premature Senescence Induced by Pollination-prevention in Maize

Lian-Cheng WU,Pei LI,Lei TIAN,Shun-Xi WANG,Ming-Na LI,Yu-Yu WANG,Sai WANG,Yan-Hui CHEN()   

  1. College of Agronomy, Henan Agricultural University / Collaborative Innovation Center of Henan Grain Crops / National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, Henan, China
  • Received:2018-01-02 Accepted:2018-07-20 Online:2018-11-12 Published:2018-07-30
  • Contact: Yan-Hui CHEN E-mail:chy9890@163.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0101205-3);the Basic Frontier Project of Henan Science and Technology Department(142300413218)

Abstract:

Senescence occurs in the last stage of maize growth and development. Timely started leaf aging has a crucial role on the formation of maize final yield. Maize inbred line Yu 816 was used to explore the molecular mechanism of early senescence induced under pollination-prevention by transcriptome analysis. Compared with the normal pollination plants, the leaves of non-pollination plants turned yellow and withered at 27 days after silking (DAS). Leaf chlorophyll content difference between pollination and non-pollination plants reached extremely significant level at 24 DAS. RNA-seq assay revealed there were 173 and 835 differentially expressed genes (DEGs) between pollinated and non-pollinated treatments at 10 DAS and 24 DAS, respectively. There were 1381 DEGs in pollination treatment group and 1591 DEGs in non-pollination treatment group between 10 DAS and 24 DAS. GO analysis showed that DEG functions between pollination and non-pollination treatments were mostly enriched in stimulus response and metabolic process at 10 DAS, whereas mainly in photosynthesis process at 24 DAS. Furthermore, pathway enrichment analysis showed that DEGs between pollinated and non-pollinated treatments were mainly involved in the metabolic pathways such as RNA degradation, photosynthesis, lignin synthesis, transcription regulation and sugar transport at 10 DAS, while primarily in the processes of signaling, hormone metabolism, photosynthesis at 24 DAS. Carbohydrate metabolism and photosynthesis processes affected by pollination-prevention result in the senescence onset and the significantly fast aging ahead of schedule in Yu 816 plants.

Key words: maize, pollination-prevention, premature senescence, transcriptome

Table 1

Primers used in RT-qPCR analysis"

基因编号
Gene ID
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
GRMZM2G033493 AATGCAACGGAGCCAACAAT TTTGTGACAGCTTCGTTCGG
GRMZM2G035243 CCAGCCATCCGTCTATCCAT TCTAATCTTGCAGCGCGAAC
GRMZM2G109070 GTGTACTACGAGAGGTCCGG AAAGCCCCAAAACGCATCTT
GRMZM2G117198 GGACACATGTTCGGGTATGC ATTGGTCACTGTCTCGTCGT
GRMZM2G339563 ATCGTTCTTCAAGGCCAGGA CATCTCGCGCTTTGAAAGGA
GRMZM5G801627 TGTGCAGGCGACCATGTATA CATCAACTCAAGACGCCGTT
GRMZM2G088053 AGAGTGAGGCCCAAGATGAC CTCAGCCTCTCCATCCTCAG
GRMZM2G109627 CGAGGATAACTGCAACGGTG GTCGTGCAGCTGATGAGAAG
GRMZM2G062129 AGCAAGTCTGATGGCTCACT AGCCAACCCTTGACTAGCAT
GRMZM2G064962 CGAAACACCACGATCCAAGG ATGTAGACTGCCTCCCACAC

Fig. 1

Phenotypic changes of Yu 816 under POL and Non-POL conditionsDAS: days after silking; POL: pollination; Non-POL: non-pollination."

Fig. 2

Chlorophyll content changes of ear leaves in non-pollination(Non-POL) and pollination (POL) plants** indicates extremely significant difference at P<0.01. DAS: days after silking."

Table 2

Overview of the sequencing reads"

样本
Sample
原始数据
Raw data count
过滤后的
reads数量
Count
after filter
过滤后
reads占比
Reads keep rate (%)
比对上的reads数量Mapped reads 比对上的
reads占比
Mapped reads
rate (%)
在参考序列上有
唯一比对位置的
reads数量
Unique mapped reads
有唯一比对位置的reads占比
Unique mapped reads (%)
10DASN_r1 7442024 7291875 97.98 6731287 92.31 5480898 81.42
10DASN_r2 9376032 9181843 97.93 8479906 92.36 7106564 83.80
10DASY_r1 7941949 7777455 97.93 7134198 91.73 5833995 81.78
10DASY_r2 8834814 8644115 97.84 7960889 92.10 6607957 83.01
24DASN_r1 9382351 9163732 97.67 8367413 91.31 7079381 84.61
24DASN_r2 8201533 8054678 98.21 7433771 92.29 6190232 83.27
24DASY_r1 8599542 8432296 98.06 7728019 91.65 6398312 82.79
24DASY_r2 9545411 9339804 97.85 8557539 91.62 7181523 83.92
24DASY_r3 8206919 8027609 97.82 7381500 91.95 6095486 82.58

Fig. 3

Principal component analysis (PCA) for all samples including three replicates N: non-pollination treatment; Y: pollination treatment; r: biological replicates."

Fig. 4

Validation of DEGs by RT-qPCR"

Fig. 5

Number of up- and down-regulated differentially expressed genes (DEGs)“10N-10Y” represents pollination treatment group at 10 DAS vs non-pollination treatment group at 10 DAS; “24N-24Y” represents pollination treatment group at 24 DAS vs non-pollination treatment group at 24 DAS; “10Y-24Y” means pollination treatment group at 24 DAS vs pollination treatment group at 10 DAS; “10N-24N” means non-pollination treatment group at 24 DAS vs non-pollination treatment group at 10 DAS."

Fig. 6

Venn diagram of DEGs identified in POL and Non-POL plants The number in non-overlapping section indicates that of special DEGs in one pairwise comparison; the number in overlapping section of DEGs means commonly expressed in different pairwise comparisons."

Fig. 7

GO analysis of differentially expressed genes"

Fig. 8

Pathway enriched analysis of DEGs"

Table 3

Premature senescence related genes induced by pollination-prevention in maize at 10 days after silking (DAS)"

玉米基因编号
Maize gene ID
差异倍数
FC (10N/10Y)
基因功能
Gene function
GRMZM2G127846 9.51 Exonuclease family protein
GRMZM2G009223 6.56 Glucose-6-phosphate/phosphate translocator 2 (GPT2)
GRMZM2G339562 6.17 Response to low sulfur 4 (LSU4)
GRMZM2G087254 5.78 APS reductase 3 (APR3)
GRMZM2G071630 3.90 Glyceraldehyde-3-phosphate dehydrogenase C2
GRMZM2G345700 3.83 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein
GRMZM2G139874 3.66 Cinnamate-4-hydroxylase (C4H)
GRMZM2G000264 3.33 H(+)-ATPase 11
GRMZM2G079613 3.23 Tetratricopeptide repeat-like superfamily protein
GRMZM2G144346 0.35 B-box type zinc finger protein with CCT domain
GRMZM2G123896 0.33 Dormancy/auxin associated family protein
GRMZM2G051151 0.31 Oxidative stress 3 (OXS3)
GRMZM2G106792 0.30 NDR1/HIN1-like 2
GRMZM5G801949 0.28 Sugar transporter 4 (STP4)
玉米基因编号
Maize gene ID
差异倍数
FC (10N/10Y)
基因功能
Gene function
GRMZM2G068510 0.24 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein
GRMZM2G172214 0.22 CBS domain containing membrane protein
AC208201.3_FG002 0.20 Protein phosphatase 2C family protein
GRMZM2G412601 0.19 SOS3-interacting protein 3 (SIP3)
GRMZM2G088819 0.16 Calcium-binding EF-hand family protein
GRMZM2G084958 0.15 Protochlorophyllide oxidoreductase A (PORA)
GRMZM2G478553 0.15 RING/U-box superfamily protein (ATL3)
GRMZM2G142802 0.14 Aluminium induced protein
GRMZM2G149024 0.12 Galacturonosyltransferase-like 2
GRMZM2G177050 0.11 SOS3-interacting protein 4 (SIP4)
GRMZM2G131055 0.08 Glycosyltransferase family 61 protein

Table 4

Carbohydrate metabolism genes in Yu 816 ear leaves at 24 days after silking (DAS)"

玉米基因编号
Maize gene ID
差异倍数
FC (24N/24Y)
基因功能
Gene function
GRMZM2G001304 0.19 Trehalose-6-phosphate synthase (TPS)
GRMZM2G068943 0.22 Trehalose-6-phosphate synthase (TPS)
GRMZM2G112830 4.55 Trehalose-phosphatase (TPP)
GRMZM2G099860 4.04 Trehalose-phosphatase (TPP)
GRMZM2G140614 2.75 Glucose-6-phosphate isomerase
GRMZM2G076075 6.43 Glucose-6-phosphate isomerase
GRMZM2G106213 40.55 ADP glucose pyrophosphorylase (AGPase)
GRMZM2G348551 6.92 Starch synthase 2 (SS2)
GRMZM2G089136 0.07 Phosphoglycerate kinase
GRMZM2G104632 2.86 Glyceraldehyde 3-phosphate dehydrogenase (GAP-DH)
GRMZM2G345493 0.09 Fructose-bisphosphate aldolase
GRMZM2G155253 0.05 Fructose-bisphosphate aldolase
玉米基因编号
Maize gene ID
差异倍数
FC (24N/24Y)
基因功能
Gene function
GRMZM2G089365 8.92 Fructose-bisphosphate aldolase
GRMZM2G046284 0.16 Fructose-bisphosphate aldolase
GRMZM5G836250 0.11 Fructose-1,6-bisphosphatase
GRMZM2G306732 0.10 Fructose-1,6-bisphosphatase
GRMZM5G875238 0.16 Sucrose phosphate synthase
GRMZM2G466780 0.20 Fructokinase-like 1 (FLN1)
GRMZM2G103843 0.28 Fructokinase-like 2 (FLN2)
[1] Quirino B F, Noh Y S, Himelblau E, Amasino R M . Molecular aspects of leaf senescence. Trends Plant Sci, 2000,5:278-282
doi: 10.1016/S1360-1385(00)01655-1 pmid: 10871899
[2] Lim P O, Kim H J, Nam H G . Leaf senescence. Annu Rev Plant Biol, 2007,58:115-136
doi: 10.1146/annurev.arplant.57.032905.105316
[3] Wang Y, Li B, Du M, Eneji A E, Wang B M, Duan L S, Li Z H, Tian X L . Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency. J Exp Bot, 2012,63:5887-5901
doi: 10.1093/jxb/ers238
[4] Breeze E, Harrison E, Mchattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim Y S, Penfold C A, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore J D, Wild D L, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V . High-resolution temporal profiling of transcripts duringArabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell, 2011,23:873-894
[5] Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D . Themolecular analysis of leaf senescence: a genomics approach. Plant Biotechnol J, 2003,1:3-22
[6] Wu X Y, Hu W J, Luo H, Xia Y, Zhao Y, Wang L D, Zhang L M, Luo J C, Jing H C . Transcriptome profiling of developmental leaf senescence in sorghum (Sorghum bicolor ). Plant Mol Biol, 2016,92:555-580
doi: 10.1007/s11103-016-0532-1 pmid: 27586543
[7] 张子山, 李耕, 高辉远, 刘鹏, 杨程, 孟祥龙, 孟庆伟 . 玉米持绿与早衰品种叶片衰老过程中光化学活性的变化. 作物学报, 2013,39:93-100
doi: 10.3724/SP.J.1006.2013.00093
Zhang Z S, Li G, Gao H Y, Liu P, Yang C, Meng X L, Meng Q W . Changes of photochemistry activity during senescence of leaves in stay greenand quick-leaf-senescence inbred lines of maize. Acta Agron Sin, 2013,39:93-100 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00093
[8] 黄雅敏, 朱杉杉, 赵志超, 蒲志刚, 刘天珍, 罗胜, 张欣 . 水稻早衰突变体psls1的基因定位及克隆. 作物学报, 2017,43:51-62
doi: 10.3724/SP.J.1006.2017.00051
Huang Y M, Zhu S S, Zhao Z C, Pu Z G, Liu T Z, Luo S, Zhang X . Gene mapping and cloning of a premature leaf senescence mutant psls1 in rice. Acta Agron Sin, 2017,43:51-62 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00051
[9] 肖艳华, 陈新龙, 杜丹, 邢亚迪, 张天泉, 祝毛迪, 刘明明, 朱小燕, 桑贤春, 何光华 . 水稻叶片淀粉积累及早衰突变体esl9的鉴定与基因定位. 作物学报, 2017,43:473-482
Xiao Y H, Chen X L, Du D, Xing Y D, Zhang T Q, Zhu M D, Liu M M, Zhu X Y, Sang X C, He G H . Identification and gene mapping of starch accumulation and early senescence leaf mutant esl9 in rice. Acta Agron Sin, 2017,43:473-482 (in Chinese with English abstract)
[10] Ceppi D, Sala M, Gentinetta E, Verderio A, Motto M . Genotype-dependent leaf senescence in maize: inheritance and effects of pollination-prevention. Plant Physiol, 1987,85:720-725
doi: 10.1104/pp.85.3.720 pmid: 16665767
[11] Zhang W Y, Xu Y C, Li W L, Yang L, Yue X, Zhang X S, Zhao X Y . Transcriptional analyses of natural leaf senescence in maize. PLoS One, 2014,9:e115617
doi: 10.1371/journal.pone.0115617 pmid: 25532107
[12] Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim P O, Nam H G, Lin J F, Wu S H, Swidzinski J, Ishizaki K, Leaver C J . Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence inArabidopsis.Plant J, 2005,42:567-585
[13] van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge U, Kunze R . Transcription analysis ofArabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol, 2006,141:776-792
[14] Liang C Z, Wang Y Q, Zhu Y N, Tang J Y, Hu B, Liu L C, Ou S J, Wu H K, Sun X H, Chu J F, Chu C C . OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA, 2014,111:10013-10018
doi: 10.1073/pnas.1321568111
[15] Penfold C A, Buchanan-Wollaston V . Modelling transcriptional networks in leaf senescence. J Exp Bot, 2014,65:3859-3873
doi: 10.1093/jxb/eru054 pmid: 24600015
[16] Zhou Y, Liu L, Huang W F, Yuan M, Zhou F, Li X H, Lin Y J . Overexpression ofOsSWEET5 in rice causes growth retardation and precocious senescence. PLoS One, 2014,9:e94210
doi: 10.1371/journal.pone.0094210 pmid: 24709840
[17] Liu J, Ji Y B, Zhou J, Xing D . Phosphatidylinositol 3-kinase promotes V-ATPase activation and vacuolar acidification and delays methyl jasmonate-induced leaf senescence. Plant Physiol, 2016,170:1714-1731
[18] Zhao Y, Chan Z L, Gao J H, Xing L, Cao M J, Yu C M, Hu Y L, You J, Shi H T, Zhu Y F, Gong Y H, Mu Z X, Wang H Q, Deng X, Wang P C, Bressan R A, Zhu J K . ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci USA, 2016,113:1949-1954
doi: 10.1073/pnas.1522840113 pmid: 26831097
[19] Mao C J, Lu S C, Lv B, Zhang B, Shen J B, He J M, Luo L Q, Xi D D, Chen X, Ming F . A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol, 2017,174:1747-1763
doi: 10.1104/pp.17.00542 pmid: 28500268
[20] Woo H R, Koo H J, Kim J, Jeong H, Yang J O, Lee I H, Jun J H, Choi S H, Park S J, Kang B, Kim Y W, Phee B K, Kim J H, Seo C, Park C, Kim S C, Park S, Lee B, Lee S, Hwang D, Nam H G, Lim P O . Programming of plant leaf senescence with temporal and inter-organellar coordination of transcriptome inArabidopsis.Plant Physiol, 2016,171:452-467
[21] He P, Osaki M, Takebe M, Shinano T, Wasaki J . Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J Exp Bot, 2005,56:1117-1128
doi: 10.1093/jxb/eri103
[22] Mortazavi A, Williams B A, Mccue K, Schaeffer L, Wold B . Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008,5:621-628
doi: 10.1038/nmeth.1226 pmid: 18516045
[23] Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L . Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protocols, 2012,7:562-578
doi: 10.1038/nprot.2012.016
[24] Usadel B, Nagel A, Thimm O, Redestig H, Blaesing O E, Palacios-Rojas N, Selbig J, Hannemann J, Piques M C, Steinhauser D, Scheible W R, Gibon Y, Morcuende R, Weicht D, Meyer S, Stitt M . Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of coresponding genes, and comparison with known responses. Plant Physiol, 2005,138:1195-1204
doi: 10.1104/pp.105.060459
[25] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCt Method . Methods, 2001,25:402-408
doi: 10.1006/meth.2001.1262
[26] Long S P, Zhu X G, Naidu S L, Ort D R . Can improvement in photosynthesis increase crop yields. Plant Cell Environ, 2006,29:315-330
doi: 10.1111/pce.2006.29.issue-3
[27] Gregersen P L, Culetic A, Boschian L, Krupinska K . Plant senescence and crop productivity. Plant Mol Biol, 2013,82:603-622
doi: 10.1007/s11103-013-0013-8
[28] Vellai T, Takacs-Vellai K, Sass M, Klionsky D J . The regulation of aging: does autophagy underlie longevity. Trends Cell Biol, 2009,19:487-494
doi: 10.1016/j.tcb.2009.07.007 pmid: 2755611
[29] Yu S M, Lo S F, Ho T D . Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci, 2015,20:844-857
doi: 10.1016/j.tplants.2015.10.009 pmid: 26603980
[30] Yadav U P, Ivakov A, Feil R, Duan G Y, Walther D, Giavalisco P, Piques M, Carillo P, Hubberten H M, Stitt M, Lunn J E . The sucrose-trehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by Tre6P. J Exp Bot, 2014,65:1051-1068
doi: 10.1093/jxb/ert457
[31] Figueroa C M, Lunn J E . A tale of two sugars: trehalose 6-phosphate and sucrose. Plant Physiol, 2016,172:7
doi: 10.1104/pp.16.00417 pmid: 27482078
[32] Wingler A, Delatte T L, O’hara L E, Primavesi L F, Jhurreea D, Paul M J, Schluepmann H . Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Plant Physiol, 2012,158:1241-1251
doi: 10.1104/pp.111.191908
[33] Song Y W, Xiang F Y, Zhang G Z, Miao Y C, Miao C, Song C P . Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset inArabidopsis thaliana.Front Plant Sci, 2016, doi: 10.3389/fpls.2016.00181
[34] Koyama T, Nii H, Mitsuda N, Ohta M, Kitajima S, Ohme-Takagi M, Sato F . A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence. Plant Physiol, 2013,162:991-1005
doi: 10.1104/pp.113.218115
[35] Koyama T . The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. Front Plant Sci, 2014,5:650
doi: 10.3389/fpls.2014.00650 pmid: 4243489
[36] Dong H Z, Niu Y H, Li W J, Zhang D M . Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. J Exp Bot, 2008,59:1295-1304
doi: 10.1093/jxb/ern035
[37] Jiang Y J, Liang G, Yang S Z, Yu D Q . Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell, 2014,26:230-245
[38] Lee H N, Lee K H, Kim C S . Abscisic acid receptor PYRABACTIN RESISTANCE-LIKE 8, PYL8, is involved in glucose response and dark-induced leaf senescence in Arabidopsis. Biochem Biophy Res Commun, 2015,463:24-28
[39] Kim H J, Nam H G, Lim P O . Regulatory network of NAC transcription factors in leaf senescence. Curr Opin Plant Biol, 2016,33:48-56
doi: 10.1016/j.pbi.2016.06.002 pmid: 27314623
[40] Guo P R, Li Z H, Huang P X, Li B S, Shuang F, Chu J F, Guo H W . A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. Plant Cell, 2017. doi: https://doi.org/ 10.1105/tpc.17.00438
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[14] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[15] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!