Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (11): 1673-1680.doi: 10.3724/SP.J.1006.2018.01673

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping QTLs for Grain Shape, Flag Leaf Traits, and Plant Height in Rice Variety Mowanggu

Wei-Ye PENG1,Ping-Yong SUN2,Su-Jun PAN1,Wei LI1,Liang-Ying DAI1,*()   

  1. 1 College of Plant Protection, Hunan Agricultural University, Changsha 410128, Hunan, China
    2 State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, Hunan, China
  • Received:2018-03-27 Accepted:2018-07-20 Online:2018-11-12 Published:2018-07-30
  • Contact: Liang-Ying DAI E-mail:daily@hunau.net
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0300700);the Natural Science Foundation of Hunan Province, China(2016JJ3071)

Abstract:

In this study, 280 recombinant inbred lines (RIL) derived from a cross between japonica rice Mowanggu and indica CO39 were used to analyse correlations and detect QTLs for grain shape, flag leaf morphology and plant height in 2015 and 2016. The flag leaf length was significantly negatively and positively correlated with grain thickness and plant height, respectively. And there was a significant positive correlation between flag leaf width and grain width. Here, we identified 17 QTLs for grain shape traits distributed on chromosomes 1, 2, 3, 4, 5, 6, 7, 9, and 10 respectively, which could explain 3.51%-48.65% of total phenotypic variance. Among of them, the region between markers RM6080 and RM6283 on chromosome 3 significantly influenced both grain length and thousand-grain weight, while RM8211-RM3381 interval on chromosome 5 influenced both grain width and grain thickness. On the other hand, 12 QTLs controlling the flag leaf traits were identified on chromosomes 1, 3, 4, 6, 7, and 9, respectively, which explained 4.26%-38.40% of the phenotypic variance. In addition, five QTL regions showing pleiotropic effects were identified. For example, the marker RM252-SFP4_6 interval on chromosome 4 could control flag leaf length, flag leaf width, flag leaf area and grain length; and the RM257-RM3909 interval on chromosome 9 was responsible for flag leaf area and grain length. Furthermore, there was a major QTL controlling plant height was identified in the interval of RM6333-RM5536 on chromosome 1, which explained 28.76% of the phenotypic variance. All these results provide a foundation for fine mapping, cloning and marker assisted selection of favorable genes related to grain shape, flag leaf traits and plant height.

Key words: rice, grain shape, flag leaf, plant height, QTL mapping

Table 1

Phenotypic performance of nine agronomic traits in the recombinant inbred lines (RIL) population and their parents"

性状
Trait
魔王谷
Mowanggu
CO39 重组自交系RIL
均值±标准差
Mean±SD
变幅
Range
变异系数
CV (%)
峰度
Kurtosis
偏度
Skewness
粒长 GL (mm) 9.43** 7.98 8.49±0.76 6.87-10.28 8.95 -0.54 0.45
粒宽GW (mm) 4.39** 3.28 3.44±0.32 2.50-4.10 9.37 -0.03 -0.47
粒长宽比GL/GW 2.15 2.43 2.50±0.36 1.85-3.75 14.37 1.32 0.99
粒厚 GT (mm) 2.48** 2.07 2.11±0.14 1.72-2.59 6.71 -0.04 0.06
千粒重TGW (g) 39.54** 22.44 24.53±3.46 14.94-33.38 14.12 -0.41 0.05
剑叶宽FW (cm) 2.50** 1.49 1.90±0.38 1.22-3.20 20.16 0.58 0.76
剑叶长FL (cm) 35.61 32.40 40.36±8.82 22.50-74.00 21.87 0.93 0.77
剑叶长宽比FL/FW 14.25** 21.79 21.88±5.67 11.67-44.40 25.92 1.35 0.97
株高 PH (cm) 143.30** 91.33 128.69±19.74 83.90-186.33 15.34 -0.19 0.38

Table 2

Correlation coefficients of nine agronomic traits in the RIL"

性状
Trait
粒长
GL
粒宽
GW
长宽比GL/GW 粒厚
GT
千粒重
TGW
剑叶宽
FW
剑叶长
FL
剑叶长宽比
FL/FW
粒宽GW -0.09
粒长宽比GL/GW 0.70** -0.76**
粒厚 GT 0.01 0.69** -0.47**
千粒重TGW 0.56** 0.42** 0.06 0.59**
剑叶宽FW -0.14* 0.23** -0.23** 0.06 0.01
剑叶长FL -0.01 -0.03 0.01 -0.21** -0.09 0.25**
剑叶长宽FL/FW 0.10 -0.19** 0.18** -0.21** -0.08 -0.53** 0.67**
株高 PH -0.05 0.07 -0.09 -0.04 0.05 0.06 0.34** 0.23**

Table 3

QTLs for grain shape, flag leaf traits and plant height detected in Mowanggu/CO39 F8 population"

性状
Traita
QTL 染色体
Chr.
标记区间
Marker interval
LOD 值
LOD scores
贡献率
R2(%)
加性效应1)
Additive 1)
粒长
GL
qGL3 3 RM6080-RM6283 29.60 48.65 0.57
qGL4 4 RM252-SFP4_6 3.27 5.25 -0.17
qGL9 9 RM257-RM3909 3.04 3.57 0.14
粒宽
GW
qGW1 1 RM5536-RM6840 4.07 6.51 0.08
qGW2 2 RM263-RM6366 4.42 6.02 0.08
qGW3 3 RM3134-RM1284 10.06 17.38 0.14
qGW5-1 5 RM8211-RM3381 4.19 13.41 -0.12
qGW5-2 5 RM1237-RM405 10.51 25.86 0.16
qGW6 6 RM527- SFP6_2 2.75 3.51 0.05
粒厚
GT
qGT1 1 RM3627-RM3475 5.05 10.47 0.05
qGT2 2 RM3732-RM7082 3.95 5.62 0.04
qGT3 3 RM5474-RM3392 11.06 17.51 0.06
qGT5 5 RM8211-RM3381 2.76 4.88 0.03
qGT10 10 RM258-RM8201 3.64 11.43 0.05
千粒重
TGW
qTGW1 1 RM6333-RM5536 4.06 8.78 1.05
qTGW3 3 RM6080-RM6283 10.71 24.05 1.78
qTGW7 7 RM8261-RM5720 3.88 7.87 0.99
剑叶长
FL
qFL1 1 RM220-RM582 4.23 9.99 -2.74
qFL4 4 RM252-SFP4_6 2.64 4.82 1.92
qFL6 6 RM225-SFP6_1 2.84 5.69 2.08
qFL7 7 RM1134-RM5672 5.37 9.60 2.98
剑叶宽
FW
qFW1 1 RM5389-RM6333 5.60 8.24 -0.11
qFW3 3 RM3564-RM5548 6.79 13.06 0.14
qFW4 4 RM252-SFP4_6 18.68 38.40 0.24
剑叶面积
FA
qFA1 1 RM220-RM582 5.70 16.14 -7.55
qFA3 3 RM3564-RM5548 4.11 7.73 5.20
qFA4 4 RM252-SFP4_6 10.74 20.02 8.38
qFA6 6 RM225-SFP6_1 3.44 6.48 4.79
qFA9 9 RM257-RM3909 2.99 4.26 -3.94
株高 PH qPH1 1 RM6333-RM5536 9.77 28.76 10.64

Fig. 1

Distribution of QTLs detected in this study in the RIL population and the cloned QTLs Sd1, Nal1, GS3, GS5, qSW5, and PGL1 are QTLs cloned by other researchers."

Table 4

Comparison of QTLs responsible for grain shape, flag leaf traits, and plant height traits between references and this study"

性状
Trait
染色体
Chr.
本研究定位区间
Interval in this study
参考文献定位区间
Interval in reference
克隆的基因
Cloned gene
参考文献
Reference
粒长 GL 3 RM6080-RM6283 GS63-SF19 GS3 Fan et al.[2]
粒宽 GW 3 RM3134-RM1284 C1488-R663 Zhou et al.[22]
5 RM8211-RM3381 S2-RM574 GS5 Li et al.[6]
5 RM8211-RM3381 MS40671-M16 qSW5 Ayahiko et al.[5]
5 RM8211-RM3381 RM169-RM1237 Zhang et al.[23]
粒厚 GT 1 RM3627-RM3475 RM11169-RM 1183 Dong et al.[24]
10 RM258-RM8201 C1488-R663 Zhou et al.[22]
剑叶宽 FW 3 RM3564-RM5548 RM7000-RM514 Luo et al.[25]
4 RM252-SFP4_6 M3-M4 Nal1 Qi et al.[10]
剑叶面积FA 1 M220-RM582 RM490-RM243 Jiang et al.[26]
1 M220-RM582 RM490-RM 243 Tong et al.[27]
1 M220-RM582 RM259-RM 243 Peng et al.[28]
株高 PH 1 RM6333-RM5536 RG220-R2414 Sd1 Sasaki et al.[12]; Spielmeyer et al.[13]; Monna et al.[14]
[1] 杨联松, 白一松, 张培江, 许传万, 胡兴明, 王伍梅, 佘德红, 陈桂芝 . 谷粒形状与稻米品质相关性研究. 杂交水稻, 2001,16(4):48-50
doi: 10.3969/j.issn.1005-3956.2001.04.023
Yang L S, Bai Y S, Zhang P J, Xu C W, Hu X M, Wang W M, She D H, Chen G Z . Studies on the correlation between grain shape and grain quality in rice. Hybrid Rice, 2001,16(4):48-50 (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-3956.2001.04.023
[2] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F . GS3 major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encode a putative transmembrane protein. Theor Appl Genet, 2006,112:1164-1171
[3] Song X J, Huang W, Shi M, Zhu M Z, Lin H X . A QTL for rice grain width and weight encodes a previously unknown RING- type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630
doi: 10.1038/ng2014 pmid: 17417637
[4] Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M . Isolation and initial characterization of GW5 , a major QTL associated with rice grain width and weight.Cell Res, 2008,18:1199
[5] Ayahiko S, Takeshi I, Kaworu E, Takeshi E, Hiromi K, Saeko K, Masahiro Y . Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008,40:1023-1028
doi: 10.1038/ng.169
[6] Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F . Natural variation inGS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011,43:1266-1269
doi: 10.1038/ng.977 pmid: 20
[7] Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L W, Gao J P, Lin H X . The novel quantitative trait locusGL3.1 controls rice grain size and yield by regulating Cyclin- T1;3. Cell Res, 2012,22:1666-1680
[8] Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D . Control of grain size, shape and quality byOsSPL16 in rice. Nat Genet, 2012,44:950
doi: 10.1038/ng.2327 pmid: 22729225
[9] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E . Loss of function of the IAA-glucose hydrolase geneTGW6 enhances rice grain weight and increases yield. Nat Genet, 2013,45:707
[10] Qi J, Qian Q, Bu Q Y, Li S Y, Chen Q, Sun J Q, Liang W X, Zhou Y H, Chu C C, Li X G, Ren F G, Klaus P, Zhao B R, Chen J F, Chen M S, Li C Y . Mutation of the rice narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol, 2008,147:1947-1959
[11] Cho S H, Yoo S C, Zhang H T, Devendra P, Koh H J, Hwang J Y, Kim G T, Paek N C . The rice narrow leaf2, and narrow leaf3, loci encode WUSCHEL-related homeobox 3A( OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. New Phytol, 2013,198:1071-1084
[12] Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M . A mutant gibberellin-synthesis gene in rice. Nature, 2002,416:701-702
doi: 10.1038/416701a
[13] Spielmeyer W, Ellis M H, Chandler P M . Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002,99:9043-9048
doi: 10.1073/pnas.132266399
[14] Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y . Positional cloning of rice semidwarfing gene, sd-1 : rice “Green Revolution Gene” encodes a mutant enzyme involved in gibberellin synthesis.DNA Res, 2002,9:11
[15] Sun P Y, Liu J L, Wang Y, Jiang N, Wang S H, Dai Y S, Gao J, Li Z Q, Pan S J, Wang D, Li W, Liu X L, Xiao Y H, Liu E M, Wang G L, Dai L Y . Molecular mapping of the blast resistance genePi49 in the durably resistant rice cultivar Mowanggu. Euphytica, 2013,192:45-54
[16] Mccouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H . Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13
[17] 姚国新, 李金杰, 张强, 胡广隆, 陈超, 汤波, 张洪亮, 李自超 . 利用4个姊妹近等基因系群体定位水稻粒重和粒形QTL. 作物学报, 2010,36:1310-1317
doi: 10.3724/SP.J.1006.2010.01310
Yao G X, Li J J, Zhang Q, Hu G L, Chen C, Tang B, Zhang H L, Li Z C . Mapping QTLs for grain weight and shape using four sister near isogenic lines of rice. Acta Agron Sin, 2010,36:1310-1317 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.01310
[18] 黎毛毛, 徐磊, 任军芳, 曹桂兰, 余丽琴, 贺浩华, 韩龙植, 高熙宗 . 粳稻粒形性状的数量性状基因座检测. 中国农业科学, 2009,42:2255-2261
Li M M, Xu L, Ren J F, Cao G L, Xu L Q, He H H, Han L Z, Gao X Z . Identification of quantitative trait loci for grain traits in japonica rice. J Integr Agric, 2009,42:2255-2261 (in Chinese with English abstract)
[19] Redona E D , MacKill D J . Quantitative trait locus analysis for rice panicle and grain characteristics. Theor Appl Genet, 1998,96:957-963
doi: 10.1007/s001220050826
[20] 邢永忠, 谈移芳, 徐才国, 华金平, 孙新立 . 利用水稻重组自交系群体定位谷粒外观性状的数量性状基因. 植物学报, 2001,43:840-845
doi: 10.3321/j.issn:1672-9072.2001.08.012
Xing Y Z, Tan Y F, Xu C G, Hua J P, Sun X L . Mapping quantitative trait loci for grain appearance traits of rice using a recombinant inbred line population. Acta Bot Sin, 2001,43:840-845 (in Chinese with English abstract)
doi: 10.3321/j.issn:1672-9072.2001.08.012
[21] Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H, Ma H, Zhang G Q, He Z H . Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008,40:1370-1374
doi: 10.1038/ng.220 pmid: 18820698
[22] 周立军, 江玲, 刘喜, 陈红, 陈亮明, 刘世家, 万建民 . 水稻千粒重和垩白粒率的QTL及其互作分析. 作物学报, 2009,35:255-261
doi: 10.3724/SP.J.1006.2009.00255
Zhou L J, Jiang L, Liu X, Chen H, Chen L M, Liu S J, Wan J M . QTL mapping and interaction analysis for 1000-grain weight and percentage of grains with chalkiness in rice. Acta Agron Sin, 2009,35:255-261 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00255
[23] 张亚东, 张颖慧, 董少玲, 陈涛, 赵庆勇, 朱镇, 周丽慧, 姚姝, 赵凌, 于新, 王才林 . 特大粒水稻材料粒型性状的QTL检测. 中国水稻科学, 2013,27:122-128
doi: 10.3969/j.issn.10017216.2013.02.003
Zhang Y D, Zhang Y H, Dong S L, Chen T, Zhao Q Y, Zhu Z, Zhou L H, Yao S, Zhao L, Yu X, Wang C L . Identification of QTL for rice grain traits based on an extra-large grain material. Chin J Rice Sci, 2013,27:122-128 (in Chinese with English abstract)
doi: 10.3969/j.issn.10017216.2013.02.003
[24] 董华林, 张晨昕, 曾波, 孙文强, 余四斌 . 利用野生稻高代回交群体分析水稻农艺性状QTL. 华中农业大学学报, 2009,28:645-650
Dong H L, Zhang C X, Zeng B, Sun W Q, Yu S B . Identification of agronomic traits QTL in common wild rice advanced backcross population. J Huazhong Agric Univ, 2009,28:645-650 (in Chinese with English abstract)
[25] 罗伟, 胡江, 孙川, 陈刚, 姜华, 曾大力, 高振宇, 张光恒, 郭龙彪, 李仕贵, 钱前 . 水稻抽穗期功能叶叶型相关性状遗传分析. 分子植物育种, 2008,6:853-860
Luo W, Hu J, Sun C, Chen G, Jiang H, Zeng D L, Gao Z Y, Zhang G H, Guo L B, Li S G, Qian Q . Genetic analysis of related phenotypes of functional leaf in rice heading stage. Mol Plant Breed, 2008,6:853-860 (in Chinese with English abstract)
[26] 姜树坤, 张喜娟, 黄成, 邢亚南, 郑旭, 徐正进, 陈温福 . 基于粳稻F2和F2:6群体的连锁图谱及剑叶性状QTL比较分析. 中国水稻科学, 2010,24:372-378
doi: 10.3969/j.issn.1001-7216.2010.04.007
Jiang S K, Zhang X J, Huang C, Xing Y N, Zheng X, Xu Z J, Chen W F . Comparison of genetic linkage map and QTLs controlling flag leaf traits based on F2 and F2:6 populations derived from japonica rice. Chin J Rice Sci, 2010,24:372-378 (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-7216.2010.04.007
[27] 童汉华, 梅捍卫, 邢永忠, 曹一平, 余新桥, 章善庆, 罗利军 . 水稻生育后期剑叶形态和生理特性的QTL定位. 中国水稻科学, 2007,21:493-499
doi: 10.3321/j.issn:1001-7216.2007.05.009
Tong H H, Mei H W, Xing Y Z, Cao Y P, Yu X Q , Zhang S Q. Luo L J. QTL analysis for morphological and physiological characteristics of flag leaf at the late developmental stage in rice. Chin J Rice Sci, 2007,21:493-499 (in Chinese with English abstract)
doi: 10.3321/j.issn:1001-7216.2007.05.009
[28] 彭茂民, 杨国华, 张菁晶, 安保光, 李阳生 . 不同遗传背景下水稻剑叶形态性状的QTL分析. 中国水稻科学, 2007,21:247-252
Peng M M, Yang G H, Zhang J J, An B G, Li Y S . QTL analysis for flag leaf morphological traits in rice Oryza sativa L. under different genetic backgrounds. Chin J Rice Sci, 2007,21:247-252 (in Chinese with English abstract)
[29] 邵高能, 唐绍清, 罗炬, 焦桂爱, 唐傲, 胡培松 . 水稻剑叶形态与稻米粒形QTL分析及相应剩余杂合体衍生群体的构建. 分子植物育种, 2009,7:16-22
doi: 10.3969/j.issn.1672-416X.2009.01.003
Shao G N, Tang S Q, Luo J, Jiao G A, Tang A, Hu P S . QTL analysis for flag leaf and grain shape and populations construction derived from related residual heterozygous lines in rice. Mol Plant Breed, 2009,7:16-22 (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-416X.2009.01.003
[30] 欧阳杰, 王楚桃, 何光华, 钟世良, 李顺武, 李贤勇 . 水稻灌浆中后期功能叶中叶绿素含量及其变化趋势与谷物产量关系研究. 西南农业学报, 2012,25:1201-1204
doi: 10.3969/j.issn.1001-4829.2012.04.015
Ou-Yang J, Wang C T, He G H, Zhong S L, Li S W, Li X Y . Study on relationship between different functional leaf chlorophyll content and its trends in mid and late period of rice filling and grain yield. Southwest China J Agric Sci, 2012,25:1201-1204 (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-4829.2012.04.015
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[3] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[4] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[5] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[6] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[7] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[8] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[9] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[10] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[11] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[12] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[13] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[14] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[15] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!