Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (11): 1733-1742.doi: 10.3724/SP.J.1006.2018.01733
• RESEARCH NOTES • Previous Articles
Lu-Man XING,Wei-Zeng LYU,Wei LEI,Yu-Huan LIANG,Yang LU,Jun-Ying CHEN()
[1] |
Mohamed H , Al-Whaibi. Plant heat- shock protein: a mini review. J King Saud Univ Sci, 2011,23:139-150
doi: 10.1016/j.jksus.2010.06.022 |
[2] |
Joshi C P, Nguyen H T . Differential display-mediated rapid identification of different members of a multigene family, HSP16.9 in wheat. Plant Mol Biol, 1996,31:575-584
doi: 10.1007/BF00042230 |
[3] |
Kyeong K K, Rosalind K, Sung H K . Crystal structure of a small heat-shock protein. Nature, 1998,394:595-599
doi: 10.1038/29106 pmid: 9707123 |
[4] |
Haslbeck M . sHsps and their role in the chaperone network. Cell Mol Life Sci, 2002,59:1649-1657
doi: 10.1007/PL00012492 pmid: 12475175 |
[5] |
Franck E , Madsen O, van Rheede T, Ricard G, Huynen M A, de Jong W W. Evolutionary diversity of vertebrate small heat shock proteins. J Mol Evol, 2004,59:792-805
doi: 10.1007/s00239-004-0013-z |
[6] | Seo J S, Lee Y M, Park H G, Lee J S . The intertidal copepod Tigriopus japonicus small heat shock protein 20 gene( Hsp20) enhances thermotolerance of transformed Escherichia coli. Biochem Biophys Res Commun, 2006,340:901-908 |
[7] |
Waters E R, Lee G J, Vierling E . Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot, 1996,47:325-338
doi: 10.1093/jxb/47.3.325 |
[8] | Helm K W, Schmeits J, Vierling E . An endomembrane-localized small heat-shock protein fromArabidopsis thaliana.Plant Physiol, 1995,107:287-288 |
[9] |
Vierling E . The roles of heat shock proteins in plants. Annu Rev Plant Biol, 1991,42:579-620
doi: 10.1146/annurev.pp.42.060191.003051 |
[10] | Scharf K D, Siddique M, Vierling E . The expanding family ofArabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones, 2001,6:225-237 |
[11] |
LaFayette P R, Nagao R T, O’Grady K, Vierling E, Key J L . Molecular characterization of cDNAs encoding low-molecular- weight heat shock proteins of soybean. Plant Mol Biol, 1996,30:159-169
doi: 10.1007/BF00017810 |
[12] |
Basha E, Friedrich K L, Vierling E . The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. J Biol Chem, 2006,281:39943-39952
doi: 10.1074/jbc.M607677200 |
[13] |
Jiao W W, Li P L, Zhang J R, Zhang H, Chang Z Y . Small heat-shock proteins function in the insoluble protein complex. Biochem Biophys Res Commun, 2005,335:227-231
doi: 10.1016/j.bbrc.2005.07.065 pmid: 16055090 |
[14] |
Prieto-Dapena P, Castano R, Almoguera C, Jordano J . Improved resistance to controlled deterioration in transgenic seeds. Plant Physiol, 2006,142:1102-1112
doi: 10.1104/pp.106.087817 |
[15] | Guo M, Liu J H, Lu J P, Zhai Y F, Wang H, Gong Z H, Wang S B, Lu M H . Genome-wide analysis of theCaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress. Front Plant Sci, 2015,6:806 |
[16] | Zhou Y L, Chen H H, Chu P, Li Y, Tan B, Ding Y , Tsang E W T, Jiang L, Wu K, Huang S Z. NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling the rmotolerance in transgenic Arabidopsis. Plant Cell Rep, 2012,2:379-389 |
[17] | Kaur H, Petla B P, Kamble N U, Singh A, Rao V . Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress. Front Plant Sci, 2015,6:713 |
[18] |
Chauhan H, Khurana N, Nijhavan A, Khurana J P, Khurana P . The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ, 2012,35:1912-1931
doi: 10.1111/j.1365-3040.2012.02525.x |
[19] |
Muthusamy S K, Dalal M, Chinnusamy V , Bansal B K C. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. J Plant Physiol, 2017,211:100-113
doi: 10.1016/j.jplph.2017.01.004 |
[20] | Sun L P, Liu Y, Kong X P, Zhang D, Pan J W, Zhou Y, Wang L, Li D Q, Yang X H . ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays ), confers heat tolerance in transgenic tobacco. Plant Cell Rep, 2012,31:1473-1484 |
[21] | 孙爱清, 葛淑娟, 董伟, 单晓笛, 董树亭, 张杰道 . 玉米小分子热激蛋白ZmHSP17.7 基因的克隆与功能分析. 作物学报, 2015,41:414-421 |
Sun A Q, Ge S J, Dong W, Shan X D, Dong S T, Zhang J D . Cloning and function analysis of small heat shock protein gene ZmHSP17.7 from maize. Acta Agron Sin, 2015,41:414-421 (in Chinese with English abstract) | |
[22] | Hu X L, Yang Y F, Gong F P, Zhang D Y, Zhang L, Wu L J, Li C H, Wang W . Protein sHSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays ). J Proteomics, 2015,115:81-92 |
[23] | Basak O, Demir I, Mavi K. Matthews S . Controlled deterioration test for predicting seedling emergence and longevity of pepper (Capsicum annuum L.) seed lots. Seed Sci Technol, 2006,34:701-712 |
[24] | Zhang L, Qiu Z, Hu Y, Yang F, Yan S, Zhao L, Li B, He S, Huang M, Li J, Li L . ABA treatment of germinating maize seeds inducesVP1 gene expression and selective promoter-associated histone acetylation. Physiol Plant, 2011,143:287-296 |
[25] |
Jana S, Choudhur M A . Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat Bot, 1982,12:345-354
doi: 10.1016/0304-3770(82)90026-2 |
[26] | 李合生 . 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 164- 169, 260-261 |
Li H S. Experimental Principles and Techniques of Plant Physiological Biochemical. Beijing: Higher Education Press, 2000. pp 164- 169, 260-261(in Chinese) | |
[27] | 曹广灿, 林一欣, 薛梅真, 邢芦蔓, 吕伟增, 杨伟飞, 陈军营 . 玉米种胚内质网胁迫相关基因对人工老化处理的响应. 中国农业科学, 2016,49:429-442 |
Cao G C, Lin Y X, Xue M Z, Xing L M, Lyu W Z, Yang W F, Chen J Y . Responses of endoplasmic reticulum stress-related genes in maize embryo to artificial aging treatment. Sci Agric Sin, 2016,49:429-442 (in Chinese with English abstract) | |
[28] |
Basha E, Neill H O, Vierling E . Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci, 2012,37:106-117
doi: 10.1016/j.tibs.2011.11.005 pmid: 3460807 |
[29] |
Levine R L, Garland D, Oliver C N, Amici A, Climent I, Lenz A G, Ahn B W, Shaltiel S, Stadtman E R . Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol, 1990,186:464-478
doi: 10.1016/0076-6879(90)86141-H |
[30] | Siddique M, Gernhard S , Koskull-Döring P V, Vierling E, Scharf K D. The plant sHSP superfamily: five new members inArabidopsis thaliana with unexpected properties. Cell Stress Chaperones, 2008,13:183-197 |
[31] |
Aung U T , McDonald M B. Changes in esterase activity associated with peanut (Arachis hypogeal L.) seed deterioration. Seed Sci Technol, 1995,23:101-111
doi: 10.1007/BF01276928 |
[32] | Begnami C N, Cortelazzo A L . Cellular alterations during accelerated aging of French bean seeds. Seed Sci Technol, 1996,24:295-303 |
[33] | Thapliyal R C, Connor K F . Effects of accelerated aging on viability, leachate exudation, and fatty acid content ofDalbergia sisso Roxb. Seed Sci Technol, 1997,25:311-319 |
[34] | Rajjou L, Lovigny Y, Groot S P, Belghazi M, Job C, Job D . Proteome-wide characterization of seed aging in Arabidopsis : a comparison between artificial and natural aging protocols.Plant Physiol, 2008,148:620-641 |
[35] | Lee G J, Pokala N, Vierling E . Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem, 1995,270:10432-10438 |
[36] |
Kim K H, Alam I, Kim Y G, Sharmin S A, Lee K W, Lee S H, Lee B H . Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnol Lett, 2012,34:371-377
doi: 10.1007/s10529-011-0769-3 |
[37] |
Lee B H, Won S H, Lee H S, Miyao M, Chung W I, Kim I J, Jo J . Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene, 2000,245:283-290
doi: 10.1016/S0378-1119(00)00043-3 pmid: 10717479 |
[38] |
Hamilton E W, Heckathorn S A . Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol, 2001,126:1266-1274
doi: 10.1104/pp.126.3.1266 |
[39] | Lund A A, Blum P H, Bhattramakki D, Elthon T E . Heat-stress response of maize mitochondria. Plant Physiol, 1998, 116:1097-1110 |
[40] |
Smykal P, Masin J, Hrdy I, Konopasek I, Zarsky V . Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP. Plant J, 2000,23:703-713
doi: 10.1046/j.1365-313x.2000.00837.x pmid: 10998182 |
[41] | Lee S H, Lee K W, Lee D G, Son D, Park S J, Kim K Y, Park H S, Cha J Y . Identification and functional characterization of Siberian wild rye (Elymus sibiricus L.) small heat shock protein 16.9 gene( EsHsp16.9) conferring diverse stress tolerance in prokaryotic cells. Biotechnol Lett, 2015,37:881-890 |
[42] |
Kim D H, Xu Z Y, Hwang I . AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phenotypes through modulation of ABA-mediated signaling. Plant Cell Rep, 2013,32:1953-1963
doi: 10.1007/s00299-013-1506-2 |
[43] |
Coca M A, Thomas T L, Jordano J . Differential regulation of small heat-shock genes in plants: analysis of a water-stress- inducible and developmentally activated sunflower promoter. Plant Mol Biol, 1996,31:863-876
doi: 10.1007/BF00019473 |
[44] |
Chauhan H, Khurana N, Nijhavan A, Khurana J P, Khurnan P . The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ Plant, 2012,35:1912-1931
doi: 10.1111/j.1365-3040.2012.02525.x |
[1] | WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[4] | SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070. |
[5] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[6] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[7] | YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974. |
[8] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
[9] | SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738. |
[10] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[11] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[12] | ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192. |
[13] | YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150. |
[14] | ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26. |
[15] | NIU Li, BAI Wen-Bo, LI Xia, DUAN Feng-Ying, HOU Peng, ZHAO Ru-Lang, WANG Yong-Hong, ZHAO Ming, LI Shao-Kun, SONG Ji-Qing, ZHOU Wen-Bin. Effects of plastic film mulching on leaf metabolic profiles of maize in the Loess Plateau with two planting densities [J]. Acta Agronomica Sinica, 2021, 47(8): 1551-1562. |
|