Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (11): 1733-1742.doi: 10.3724/SP.J.1006.2018.01733

• RESEARCH NOTES • Previous Articles    

Response of HSP20 Genes to Artificial Aging Treatment in Maize Embryo

Lu-Man XING,Wei-Zeng LYU,Wei LEI,Yu-Huan LIANG,Yang LU,Jun-Ying CHEN()   

  1. College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
  • Received:2018-03-20 Accepted:2018-07-20 Online:2018-11-12 Published:2018-07-30
  • Contact: Jun-Ying CHEN E-mail:chenjunying3978@126.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31571761)

Abstract:

Maize (Zea mays L.) cultivar ‘Zhengdan 958’ seeds were treated by artificial aging (45°C, 100% relative humidity) and RNA-seq was used to study the response of HSP20 genes to artificial aging treatment of seeds, so as to provide evidences for uncovering the molecular mechanism of seed aging. In the study, the seed vigor decreased dramatically with increasing aging time. The activity of catalase in seed embryo showed a decreasing trend. The content of hydrogen peroxide increased to the maximum at the third day of aging and then decreased. The content of malonaldehyde increased, which indicated that the damage to the membrane system increased. Twenty-five HSP20 genes were identified. These genes encoded HSP20 and mainly distributed in nuclei, mitochondria and chloroplasts. There was a conserved ACD sequence (RVDWRETPDAHEIVVDVPGMRREDLRIEVE DNRVLRVSGERRRAEERKGDHWHREERSYGRFW RRFRLPENADLDSVAASLDSGVLTVRFRK) in HSP20 protein which contains more amino acids, such as Arg (11.2%), Lys (7.2%), Pro (4.2%), and Thr (3.9%). In the aging process these amino acids might be oxidized by ROS accumulated in the embryo, leading to protein structure damaged and loss of functions. The expression patterns of HSP20 genes in cytoplasm, chloroplasts and mitochondria were validated by qRT-PCR, showing that the expressions of cytoplasmic HSP20 genes were up-regulated and those of chloroplast and mitochondrial HSP20 genes reached peak at the third day of aging treatment, and then declined. These suggested that the HSP20 genes play an important role in seeds aging, and the targeted oxidation of Arg, Lys and other amino acids in the ACD structural domain may be an essential cause leading to seed deterioration.

Key words: maize, seed embryo, seed aging, differential expressed genes, HSP20

Supplementary table 1

Primer for expression analysis of HAP20s genes"

基因ID号
Gene ID
引物序列
Primer sequence (5'-3')
退火温度
Annealing temperature (℃)
产物长度
Product length (bp)
GRMZM2G049767 F GCTGTACTACAGGTAGTATAAC 59 105
R GCACAACACTTCCATACA 59
GRMZM2G306679 F TAGTGATTATCCGTTATGTACTC 59 141
R ACAGAACAGATTGTATTAGGTT 59
GRMZM2G479260 F GTCTTCGTCTTAGTGTTGAT 58.9 109
R TACTCAAGACAGCCATGA 59
GRMZM2G375517 F AGATGTGAATGTGATCTGAC 59 116
R AGTACATATTAACTCACGCAA 58.9
GRMZM5G858128 F TCTAACAGAACTCGCTGA 59 179
R CATCATCATACCACCGATC 59.1
GRMZM2G346839 F CATCATCATACCACCGATC 59.1 179
R TCTAACAGAACTCGCTGA 59
GRMZM2G335242 F GTACGTCTGAATTCTGGTC 59.1 98
R CTCACTCGGATTACTTGC 58.9
GRMZM2G080724 F GATTCATCAGGACGATGAG 59 101
R AAGAAGAGTGGTAGCTAGAT 58.9
GRMZM2G012455 F AGACCATCGAGATTAAGGT 59 179
R ACACATCAGGTAGGATGAT 59
GRMZM2G311710 F ACACATCAGGTAGGATGAT 59 179
R AGACCATCGAGATTAAGGT 59
GRMZM2G333635 F GAGGACAAGAACGACAAG 59.1 154
R TCTTCACCTCCGTCTTAG 59.1
GRMZM2G158232 F TGAGGTGAAGGCTATTGA 59 89
R ATATCGTAGAAGACACAGGA 59
GRMZM2G331701 F ATGACTCAATGACGGAGA 59.1 90
R GCATATACGCTGTCACAA 58.9
GRMZM5G849535 F ATATCGTAGAAGACACAGGA 59 110
R GATATCTGGTTGAGCATCC 59
GRMZM2G034157 F GGTATCACCAATCATCCTATC 59.2 83
R GTTACAAGAGACATGTAGAGAT 58.9
GRMZM2G083810 F ACCAATTCCTATCTGATGTATC 59 112
R GTCAATGAAGACTACGGATTA 59
GRMZM2G332512 F GCTTGTTGTGTTGGTTTC 58.9 117
R CCTTCCAGAAGAACAGAAG 59
GRMZM2G404274 F ACACATCAGGTAGGATGAT 59 179
R AGACCATCGAGATTAAGGT 59
GRMZM2G085934 F CGATGGACATAGTGGAGA 59.2 113
R CTTCATCACTAGCATCCG 58.7
GRMZM2G149647 F GGTCTTTGTGTAGCACTAG 59.1 109
R ATAGCAGAATTGAAGCGTT 59
GRMZM2G098167 F AGAGTAGCAGCAGTAGAAT 59 154
R CAGAGACACGATTGAATAATTC 59
GRMZM2G046382 F GTCGTAATGTCGTAGGATG 59 85
R ATCCATACATAGATTCAGACAC 59
AC208204.3_FGT006 F CAACGTCCTTCAGATCAG 58.9 175
R CACAGTGACTGTAAGCAC 59.4
NM-001155179.1(Actin1) F GTATGAGCAAGGAGATCAC 58.9 194
R TTAGAAGCACTTCATGTGG 59.0

Table 1

Effects of artificial aging treatment on different vigor indexes of seeds"

处理时间
Treatment time
发芽率
Germination rate (%)
发芽指数
Germination index
活力指数
Vigor index
平均发芽日数
Mean days of germination (d)
0 d 100±0.00 a 9.44±0.25 a 124.14±5.57 a 2.17±0.08 b
1 d 100±0.00 a 8.22±0.54 b 100.07±4.93 b 2.53±0.16 b
2 d 100±0.00 a 8.11±0.25 b 101.32±1.17 b 2.56±0.08 b
3 d 86.67±0.06 b 6.29±0.32 c 75.73±10.45 c 2.86±0.03 b
4 d 66.67±0.08 c 3.96±0.50 d 41.63±5.39 d 3.48±0.11 ab
5 d 21.67±0.10 d 1.11±0.42 e 8.95±1.84 e 4.11±1.02 a

Fig. 1

Effect of artificial aging treatment on seed vigor"

Table 2

Effects of artificial aging treatment on different physiological indexes in embryo"

处理时间
Treatment time
过氧化氢酶活性
CAT activity (U g-1 FW min-1)
过氧化氢含量
H2O2 content (μmol g-1 FW)
丙二醛含量
MDA content (μmol g-1 FW)
0 d 0.39±0.11 a 0.38±0.03 b 0.16±0.11 c
1 d 0.26±0.13 a 0.40±0.02 b 0.18±0.03 c
2 d 0.18±0.12 ab 0.42±0.02 b 0.33±0.10 c
3 d 0.14±0.07 b 0.51±0.06 a 0.43±0.19 c
4 d 0.14±0.03 b 0.43±0.02 ab 0.87±0.26 b
5 d 0.06±0.02 b 0.29±0.03 c 1.955±0.21 a

Table 3

HSP20 related genes and their expression in artificial aged maize seed embryo"

基因ID
Gene ID
log2比值
log2 Ratio
P
P-value
错误发现率
False discovery rate
基因注释
Gene annotation
亚细胞定位
Subcellular localization
GRMZM2G481605 8.84 1.89E-259 5.63E-257 17.9 kD class I heat shock protein Nuclear
GRMZM2G049767 8.19 1.07E-164 2.04E-162 17.9 kD class I heat shock protein Nuclear
GRMZM2G306679 7.37 0 0 17.9 kD class I heat shock protein Nuclear
GRMZM2G479260 6.71 0 0 17.9 kD class I heat shock protein Nuclear
GRMZM2G375517 6.70 0 0 17.8 kD class I heat shock protein Cytoplasmic
GRMZM5G858128 6.53 6.93E-222 1.83E-219 22.0 kD class IV heat shock protein Mitochondria
GRMZM2G306714 6.28 0 0 Class I heat shock protein 3 Nuclear
GRMZM2G346839 5.97 7.04E-66 5.89E-64 18.3 kD class I heat shock protein Cytoplasmic
GRMZM2G335242 5.96 0 0 15.7 kD class I heat shock protein Cytoplasmic
GRMZM2G080724 5.61 0 0 Retrotransposon protein [Zea mays] Mitochondrial
GRMZM2G012455 5.19 8.52E-135 1.34E-132 17.6 kD class II heat shock protein Cytoplasmic
GRMZM2G311710 4.98 0 0 17.0 kD class II heat shock protein Nuclear
GRMZM2G333635 4.48 0 0 17.9 kD class I heat shock protein Nuclear
GRMZM2G158232 4.33 0 0 17.9 kD class I heat shock protein Nuclear
GRMZM2G331701 4.31 0 0 18.3 kD class I heat shock Cytoplasmic
GRMZM5G849535 4.30 0 0 16.9 kD class I heat shock protein 1-like Mitochondrial
GRMZM2G034157 4.27 2.84E-22 8.22E-21 17.8 kD class II heat shock protein Cytoplasmic
GRMZM2G083810 4.18 0 0 17.8 kD class II heat shock protein Cytoplasmic
GRMZM2G332512 3.94 1.36E-70 1.22E-68 Heat shock protein18c (hsp18c) Nuclear
GRMZM2G085934 3.88 3.28E-10 4.36E-09 18.6 kD class III heat shock protein Cytoplasmic
GRMZM2G404274 3.88 1.34E-197 3.16E-195 18.0 kD heat shock protein 18a Nuclear
GRMZM2G149647 3.52 0 0 Hsp26 - heat shock protein 26 Chloroplast
GRMZM2G098167 3.49 0 0 17.0 kD class II heat shock protein Cytoplasmic
GRMZM2G046382 3.22 0 0 17.9 kD class I heat shock protein Nuclear
AC208204.3_FG006 3.10 0 0 17.4 kD class I heat shock protein Nuclear

Fig. 2

Conserved domain of HSP20"

Table 4

Sequence analysis of ACD domain"

基因ID
Gene ID
ACD氨基酸数
Amino acid number
个数/百分比Number/percentage (%)
精氨酸 Arg (R) 赖氨酸 Lys (K) 脯氨酸 Pro (P) 苏氨酸 Thr (T)
GRMZM2G481605 109 12/11.0 3/2.7 3/2.7 4/3.7
GRMZM2G049767 96 14/14.6 5/5.2 4/4.2 3/3.1
GRMZM2G306679 92 9/9.8 10/10.9 4/4.3 3/3.3
GRMZM2G479260 92 8/8.7 9/9.8 3/3.3 8/8.7
GRMZM2G375517 87 16/18.4 4/4.6 4/4.6 3/3.4
GRMZM2G346839 93 17/18.3 2/2.3 3/3.2 2/2.2
GRMZM2G335242 97 6/6.2 8/8.2 7/7.2 4/4.1
GRMZM2G080724 97 10/10.3 4/4.1 6/6.2 3/3.1
GRMZM2G012455 97 11/11.3 5/5.2 2/2.1 3/3.1
GRMZM2G333635 92 8/8.7 11/12 4/4.3 3/3.3
GRMZM2G158232 92 8/8.7 11/12 4/4.3 4/4.3
GRMZM2G331701 92 19/20.7 2/2.2 3/3.3 2/2.3
GRMZM2G034157 98 10/10.2 5/5.1 3/3.1 2/2.0
GRMZM2G083810 87 10/11.5 6/6.9 3/3.4 2/2.3
GRMZM2G085934 78 9/11.5 5/6.4 4/5.1 1/1.3
GRMZM2G149647 107 6/5.6 11/10.3 3/2.8 3/2.8
GRMZM2G098167 113 11/9.7 10/8.8 7/6.2 6/5.3
GRMZM2G046382 92 8/8.7 9/9.8 4/4.3 7/7.6
AC208204.3_FG006 92 8/8.7 9/9.8 4/4.3 7/7.6
平均值Mean 95 11/11.2 7/7.2 4 /4.2 4/3.9

Supplementary fig. 1

The red word in the figure were the four selected genes in the article.The red word in the figure were the four selected genes in the article."

Fig. 3

Expression patterns of HSP20 genes in different artificial aging treatment timesBars superscripted by different letters are significantly different at the 0.05 probability level."

[1] Mohamed H , Al-Whaibi. Plant heat- shock protein: a mini review. J King Saud Univ Sci, 2011,23:139-150
doi: 10.1016/j.jksus.2010.06.022
[2] Joshi C P, Nguyen H T . Differential display-mediated rapid identification of different members of a multigene family, HSP16.9 in wheat. Plant Mol Biol, 1996,31:575-584
doi: 10.1007/BF00042230
[3] Kyeong K K, Rosalind K, Sung H K . Crystal structure of a small heat-shock protein. Nature, 1998,394:595-599
doi: 10.1038/29106 pmid: 9707123
[4] Haslbeck M . sHsps and their role in the chaperone network. Cell Mol Life Sci, 2002,59:1649-1657
doi: 10.1007/PL00012492 pmid: 12475175
[5] Franck E , Madsen O, van Rheede T, Ricard G, Huynen M A, de Jong W W. Evolutionary diversity of vertebrate small heat shock proteins. J Mol Evol, 2004,59:792-805
doi: 10.1007/s00239-004-0013-z
[6] Seo J S, Lee Y M, Park H G, Lee J S . The intertidal copepod Tigriopus japonicus small heat shock protein 20 gene( Hsp20) enhances thermotolerance of transformed Escherichia coli. Biochem Biophys Res Commun, 2006,340:901-908
[7] Waters E R, Lee G J, Vierling E . Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot, 1996,47:325-338
doi: 10.1093/jxb/47.3.325
[8] Helm K W, Schmeits J, Vierling E . An endomembrane-localized small heat-shock protein fromArabidopsis thaliana.Plant Physiol, 1995,107:287-288
[9] Vierling E . The roles of heat shock proteins in plants. Annu Rev Plant Biol, 1991,42:579-620
doi: 10.1146/annurev.pp.42.060191.003051
[10] Scharf K D, Siddique M, Vierling E . The expanding family ofArabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones, 2001,6:225-237
[11] LaFayette P R, Nagao R T, O’Grady K, Vierling E, Key J L . Molecular characterization of cDNAs encoding low-molecular- weight heat shock proteins of soybean. Plant Mol Biol, 1996,30:159-169
doi: 10.1007/BF00017810
[12] Basha E, Friedrich K L, Vierling E . The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. J Biol Chem, 2006,281:39943-39952
doi: 10.1074/jbc.M607677200
[13] Jiao W W, Li P L, Zhang J R, Zhang H, Chang Z Y . Small heat-shock proteins function in the insoluble protein complex. Biochem Biophys Res Commun, 2005,335:227-231
doi: 10.1016/j.bbrc.2005.07.065 pmid: 16055090
[14] Prieto-Dapena P, Castano R, Almoguera C, Jordano J . Improved resistance to controlled deterioration in transgenic seeds. Plant Physiol, 2006,142:1102-1112
doi: 10.1104/pp.106.087817
[15] Guo M, Liu J H, Lu J P, Zhai Y F, Wang H, Gong Z H, Wang S B, Lu M H . Genome-wide analysis of theCaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress. Front Plant Sci, 2015,6:806
[16] Zhou Y L, Chen H H, Chu P, Li Y, Tan B, Ding Y , Tsang E W T, Jiang L, Wu K, Huang S Z. NnHSP17.5, a cytosolic class II small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling the rmotolerance in transgenic Arabidopsis. Plant Cell Rep, 2012,2:379-389
[17] Kaur H, Petla B P, Kamble N U, Singh A, Rao V . Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress. Front Plant Sci, 2015,6:713
[18] Chauhan H, Khurana N, Nijhavan A, Khurana J P, Khurana P . The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ, 2012,35:1912-1931
doi: 10.1111/j.1365-3040.2012.02525.x
[19] Muthusamy S K, Dalal M, Chinnusamy V , Bansal B K C. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. J Plant Physiol, 2017,211:100-113
doi: 10.1016/j.jplph.2017.01.004
[20] Sun L P, Liu Y, Kong X P, Zhang D, Pan J W, Zhou Y, Wang L, Li D Q, Yang X H . ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays ), confers heat tolerance in transgenic tobacco. Plant Cell Rep, 2012,31:1473-1484
[21] 孙爱清, 葛淑娟, 董伟, 单晓笛, 董树亭, 张杰道 . 玉米小分子热激蛋白ZmHSP17.7 基因的克隆与功能分析. 作物学报, 2015,41:414-421
Sun A Q, Ge S J, Dong W, Shan X D, Dong S T, Zhang J D . Cloning and function analysis of small heat shock protein gene ZmHSP17.7 from maize. Acta Agron Sin, 2015,41:414-421 (in Chinese with English abstract)
[22] Hu X L, Yang Y F, Gong F P, Zhang D Y, Zhang L, Wu L J, Li C H, Wang W . Protein sHSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays ). J Proteomics, 2015,115:81-92
[23] Basak O, Demir I, Mavi K. Matthews S . Controlled deterioration test for predicting seedling emergence and longevity of pepper (Capsicum annuum L.) seed lots. Seed Sci Technol, 2006,34:701-712
[24] Zhang L, Qiu Z, Hu Y, Yang F, Yan S, Zhao L, Li B, He S, Huang M, Li J, Li L . ABA treatment of germinating maize seeds inducesVP1 gene expression and selective promoter-associated histone acetylation. Physiol Plant, 2011,143:287-296
[25] Jana S, Choudhur M A . Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat Bot, 1982,12:345-354
doi: 10.1016/0304-3770(82)90026-2
[26] 李合生 . 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 164- 169, 260-261
Li H S. Experimental Principles and Techniques of Plant Physiological Biochemical. Beijing: Higher Education Press, 2000. pp 164- 169, 260-261(in Chinese)
[27] 曹广灿, 林一欣, 薛梅真, 邢芦蔓, 吕伟增, 杨伟飞, 陈军营 . 玉米种胚内质网胁迫相关基因对人工老化处理的响应. 中国农业科学, 2016,49:429-442
Cao G C, Lin Y X, Xue M Z, Xing L M, Lyu W Z, Yang W F, Chen J Y . Responses of endoplasmic reticulum stress-related genes in maize embryo to artificial aging treatment. Sci Agric Sin, 2016,49:429-442 (in Chinese with English abstract)
[28] Basha E, Neill H O, Vierling E . Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci, 2012,37:106-117
doi: 10.1016/j.tibs.2011.11.005 pmid: 3460807
[29] Levine R L, Garland D, Oliver C N, Amici A, Climent I, Lenz A G, Ahn B W, Shaltiel S, Stadtman E R . Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol, 1990,186:464-478
doi: 10.1016/0076-6879(90)86141-H
[30] Siddique M, Gernhard S , Koskull-Döring P V, Vierling E, Scharf K D. The plant sHSP superfamily: five new members inArabidopsis thaliana with unexpected properties. Cell Stress Chaperones, 2008,13:183-197
[31] Aung U T , McDonald M B. Changes in esterase activity associated with peanut (Arachis hypogeal L.) seed deterioration. Seed Sci Technol, 1995,23:101-111
doi: 10.1007/BF01276928
[32] Begnami C N, Cortelazzo A L . Cellular alterations during accelerated aging of French bean seeds. Seed Sci Technol, 1996,24:295-303
[33] Thapliyal R C, Connor K F . Effects of accelerated aging on viability, leachate exudation, and fatty acid content ofDalbergia sisso Roxb. Seed Sci Technol, 1997,25:311-319
[34] Rajjou L, Lovigny Y, Groot S P, Belghazi M, Job C, Job D . Proteome-wide characterization of seed aging in Arabidopsis : a comparison between artificial and natural aging protocols.Plant Physiol, 2008,148:620-641
[35] Lee G J, Pokala N, Vierling E . Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem, 1995,270:10432-10438
[36] Kim K H, Alam I, Kim Y G, Sharmin S A, Lee K W, Lee S H, Lee B H . Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnol Lett, 2012,34:371-377
doi: 10.1007/s10529-011-0769-3
[37] Lee B H, Won S H, Lee H S, Miyao M, Chung W I, Kim I J, Jo J . Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene, 2000,245:283-290
doi: 10.1016/S0378-1119(00)00043-3 pmid: 10717479
[38] Hamilton E W, Heckathorn S A . Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol, 2001,126:1266-1274
doi: 10.1104/pp.126.3.1266
[39] Lund A A, Blum P H, Bhattramakki D, Elthon T E . Heat-stress response of maize mitochondria. Plant Physiol, 1998, 116:1097-1110
[40] Smykal P, Masin J, Hrdy I, Konopasek I, Zarsky V . Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP. Plant J, 2000,23:703-713
doi: 10.1046/j.1365-313x.2000.00837.x pmid: 10998182
[41] Lee S H, Lee K W, Lee D G, Son D, Park S J, Kim K Y, Park H S, Cha J Y . Identification and functional characterization of Siberian wild rye (Elymus sibiricus L.) small heat shock protein 16.9 gene( EsHsp16.9) conferring diverse stress tolerance in prokaryotic cells. Biotechnol Lett, 2015,37:881-890
[42] Kim D H, Xu Z Y, Hwang I . AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phenotypes through modulation of ABA-mediated signaling. Plant Cell Rep, 2013,32:1953-1963
doi: 10.1007/s00299-013-1506-2
[43] Coca M A, Thomas T L, Jordano J . Differential regulation of small heat-shock genes in plants: analysis of a water-stress- inducible and developmentally activated sunflower promoter. Plant Mol Biol, 1996,31:863-876
doi: 10.1007/BF00019473
[44] Chauhan H, Khurana N, Nijhavan A, Khurana J P, Khurnan P . The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. Plant Cell Environ Plant, 2012,35:1912-1931
doi: 10.1111/j.1365-3040.2012.02525.x
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[14] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[15] NIU Li, BAI Wen-Bo, LI Xia, DUAN Feng-Ying, HOU Peng, ZHAO Ru-Lang, WANG Yong-Hong, ZHAO Ming, LI Shao-Kun, SONG Ji-Qing, ZHOU Wen-Bin. Effects of plastic film mulching on leaf metabolic profiles of maize in the Loess Plateau with two planting densities [J]. Acta Agronomica Sinica, 2021, 47(8): 1551-1562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!