Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (12): 1755-1763.doi: 10.3724/SP.J.1006.2018.01755

• SPECIAL SECTION: GRAIN DEHYDRATION AND MECHANICAL GRAIN HARVEST OF MAIZE • Previous Articles     Next Articles

Relationship between Grain Dehydration and Meteorological Factors in the Yellow-Huai-Hai Rivers Summer Maize

Shang GAO,Bo MING,Lu-Lu LI,Rui-Zhi XIE,Jun XUE,Peng HOU,Ke-Ru WANG(),Shao-Kun LI()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Beijing 100081, China
  • Received:2018-06-09 Accepted:2018-08-20 Online:2018-12-12 Published:2018-09-19
  • Contact: Ke-Ru WANG,Shao-Kun LI E-mail:wkeru01@163.com;lishaokun@caas.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0300101);the National Natural Science Foundation of China(31371575);the China Agriculture Research System(CARS-02-25);the Innovation Project of Agricultural Science and Technology at Chinese Academy of Agricultural Sciences.

Abstract:

There is a close relationship between maize grain dehydration and meteorological factors. Clarifying main meteorological factors and their influence on grain dehydration can better predict the dynamics of grain moisture content, and the rationally arrange the time of maize grain harvesting. The study was conducted in Xinxiang, Henan province from 2015 to 2017. Four main maize varieties Jingnongke 728 (JNK728), Zhengdan 958 (ZD958), Xianyu 335 (XY335), and Nonghua 816 (NH816) currently planted in local production were selected to continuously measure the changes of maize grain moisture content. The logistic power model was used for fitting the process of grain dehydration and the removing trend method was used for analysing the results. The actual moisture content of maize grain was divided into trend moisture content, meteorological moisture content, and random error. The relationship between meteorological moisture content and meteorological factors in the Yellow-Huai-Hai Rivers area was clarified. The main meteorological factors affecting grain dehydration before and after physiological maturity of maize grain were screened out stepwise regression and path analysis methods. The meteorological moisture content of maize grain had significant or extremely significant correlation with most meteorological factors which were average temperature (x1), average wind speed (x5) and evaporation (x11) selected before physiological maturity, and the average temperature (x1) and the average relative humidity (x7) selected after the physiological maturity. The evaporation most contributed before the physiological maturity, while temperature and wind speed had indirect effect through evaporation. After physiological maturity, temperature and relative humidity were mainly direct effects, and the effect of relative humidity was slightly greater than that of temperature. The removing trend method used in this study is more scientific in both theoretical and practical operations. The results are also more credible and this method is of reference value to other similar researches.

Key words: summer maize, grain dehydration, moisture content, meteorological factors, removing trend analysis

Table 1

Basic meteorological data of Xinxiang from 2015 to 2017"

项目 Item 2015 2016 2017
平均温度Average temperature (℃) 15.593 15.904 16.180
最高温度 Maximum temperature (℃) 20.621 21.000 21.526
最低温度 Minimum temperature (℃) 11.332 11.677 11.604
日生长度 Average growing degree days 8.103 8.495 8.617
气温日较差 Diurnal temperature range (℃) 9.289 9.323 9.922
日降水量 Daily precipitation (mm) 1.541 2.717 1.099
风速 Wind speed (m s-1) 2.049 1.999 2.079
最大风速 Maximum wind speed (m s-1) 4.735 4.622 4.689
相对湿度 Relative humidity (%) 61.071 60.232 59.800
日照时数 Sunshine hours (h) 5.275 5.572 6.104
无霜期天数 Frostless season days (d) 256 254 260
无霜期起始日期 Start date of frostless season 2015/3/11 2016/3/12 2017/3/3
无霜期结束日期 End date of frostless season 2015/11/22 2016/11/21 2017/11/18
大于0℃积温 Over 0℃ accumulated temperature (℃) 5710.8 5868.2 5911.7
大于10℃积温 Over 10℃ accumulated temperature (℃) 2786.3 2913.6 2958.9
总生长度 Total growing degree days 2957.5 3109.3 3145.05
累积降水量 Cumulative precipitation (mm) 562.4 994.3 401.1
累积日照时数Cumulative sunshine hours (h) 1925.5 2039.5 2228

Fig. 1

Partial meteorological data during the sampling period of maize"

Fig. 2

Relationship between accumulated temperature after pollination and grain moisture content of different maize varieties JNK728: Jingnongke 728; ZD958: Zhengdan 958; XY335: Xianyu 335; NH816: Nonghua 816."

Fig. 3

Relationship between meteorological-moisture content and accumulated temperature after pollination of different maize varieties The name of the varieties are the same as those given in Fig. 2."

Table 2

Correlation coefficients between meteorological-moisture content and meteorological factors at different stages"

气象因子
Meteorological factor
生理成熟前
Before physiological maturity
生理成熟后
After physiological maturity
全生育期
Full growth period
平均温度x1 -0.5668** 0.4514** 0.2473**
最高温度x2 -0.5308** 0.3687** 0.2041**
最低温度x3 -0.5438** 0.4969** 0.2771**
气温日较差x4 -0.0569 -0.2952** -0.2264**
平均风速x5 -0.1854 -0.3103** -0.2331**
最大风速x6 -0.1600 -0.3952** -0.2959**
平均相对湿度x7 0.0835 0.5709** 0.4146**
最小相对湿度x8 0.0422 0.5248** 0.3498**
日照时数x9 -0.2274* -0.2132* -0.1624*
太阳辐射x10 -0.4143** 0.0508 -0.0004
蒸发量x11 -0.5743** 0.2213* 0.0733

Table 3

Stepwise regression results of meteorological-moisture content and meteorological factors"

方程Equation R2
生理成熟前 Before physiological maturity y=0.37494x1+5.55477x5-4.94533x11+2.97332 0.4650**
生理成熟后 After physiological maturity y=0.13915x1+10.82154x7-9.41603 0.3845**
全生育期 Full growth period y= -0.86465x5+9.30528x7-4.75623 0.1884**

Table 4

Path analysis of meteorological-moisture content and meteorological factors"

自变量
Independent variable
相关系数ri
Correlation coefficient
直接作用
Pi
Direct action
间接作用
Indirect effect
生理成熟前 总和Total x1 x5 x11
Before physiological maturity x1 -0.5668 0.58472 -1.15149 0.08007 -1.23155
x5 -0.1854 0.99096 -1.17629 0.047245 -1.22353
x11 -0.5743 -1.7067 1.132353 0.421934 0.710419
生理成熟后 总和Total x1 x7
After physiological maturity x1 0.4514 0.26433 0.187076 0.187076
x7 0.5709 0.46444 0.106472 0.106472
全生育期 总和Total x5 x7
Full growth period x5 -0.2331 -0.133 -0.10009 -0.10009
x7 0.4146 0.37956 0.035072 0.035072

Table 5

Coefficient of determination of meteorological-moisture content and total contribution of R2 to meteorological factors"

生理成熟前 Before physiological maturity 生理成熟后 After physiological maturity 全生育期 Full growth period
决定系数
Coefficient
R2贡献度
Contribution
决定系数
Coefficient
R2贡献度
Contribution
决定系数
Coefficient
R2贡献度
Contribution
d1 0.341897 r1·P1 -0.33142 d1 0.06987 r1·P1 0.119319 d5 0.017689 r5·P5 0.031002
d5 0.982002 r5·P5 -0.18372 d7 0.215705 r7·P7 0.265149 d7 0.144066 r7·P7 0.157366
d11 2.912825 r11·P11 0.980158 de 0.615533 de 0.811632
de 0.534985 d1,7 0.0989 d5,7 0.026624
d1,5 0.093637
d1,11 -1.44023
d5,11 -2.42494
[1] 谢瑞芝, 雷晓鹏, 王克如, 郭银巧, 柴宗文, 侯鹏, 李少昆 . 黄淮海夏玉米籽粒机械收获研究初报. 作物杂志, 2014, ( 2):76-79
Xie R Z, Lei X P, Wang K R, Guo Y Q, Chai Z W, Hou P, Li S K . Research on corn mechanically harvesting grain quality in Huanghuaihai plain. Crops, 2014, ( 2):76-79 (in Chinese with English abstract)
[2] 李少昆, 王克如, 谢瑞芝, 侯鹏, 明博, 杨小霞, 韩冬生, 王玉华 . 实施密植高产机械化生产, 实现玉米高产高效协同. 作物杂志, 2016, ( 4):1-6
Li S K, Wang K R, Xie R Z, Hou P, Ming B, Yang X X, Han D S, Wang Y H . Implementing higher population and full mechanization technologies to achieve high yield and high efficiency in maize production. Crops, 2016, ( 4):1-6 (in Chinese with English abstract)
[3] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆 . 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017,50:2036-2043
doi: 10.3864/j.issn.0578-1752.2017.11.009
Chai Z W, Wang K R, Guo Y Q, Xie R Z, Li L L, Ming B, Hou P, Liu C W, Chu Z D, Zhang W X, Zhang G Q, Liu G Z, Li S K . Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Sci Agric Sin, 2017,50:2036-2043 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.11.009
[4] 李璐璐, 雷晓鹏, 谢瑞芝, 王克如, 侯鹏, 张凤路, 李少昆 . 夏玉米机械粒收质量影响因素分析. 中国农业科学, 2017,50:2044-2051
Li L L, Lei X P, Xie R Z, Wang K R, Hou P, Zhang F L, Li S K . Analysis of influential factors on mechanical grain harvest quality of summer maize. Sci Agric Sin, 2017,50:2044-2051 (in Chinese with English abstract)
[5] 柳枫贺, 王克如, 李健, 王喜梅, 孙亚玲, 陈永生, 王玉华, 韩冬生, 李少昆 . 影响玉米机械收粒质量因素的分析. 作物杂志, 2013, ( 4):116-119
Liu F H, Wang K R, Li J, Wang X M, Sun Y L, Chen Y S, Wang Y H, Han D S, Li S K . Factors affecting corn mechanically harvesting grain quality. Crops, 2013, ( 4):116-119 (in Chinese with English abstract)
[6] 王克如, 李少昆 . 玉米机械粒收破碎率研究进展. 中国农业科学, 2017,50:2018-2026
doi: 10.3864/j.issn.0578-1752.2017.11.007
Wang K R, Li S K . Progresses in research on grain broken rate by mechanical grain harvesting. Sci Agric Sin, 2017,50:2018-2026 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.11.007
[7] 李少昆 . 我国玉米机械粒收质量影响因素及粒收技术的发展方向. 石河子大学学报(自然科学版), 2017,35(3):265-272
Li S K . Factors Affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology. J Shihezi Univ ( Nat Sci), 2017,35(3):265-272 (in Chinese with English abstract)
[8] Cross H Z . Leaf expansion rate effects on yield and yield components in early-maturing maize. Crop Sci, 1991,31:579-583
doi: 10.2135/cropsci1991.0011183X003100030006x
[9] Magari R, Kang M S, Zhang Y . Sample size for evaluating field ear moisture loss rate in maize. Maydica, 1996,41:19-24
[10] 王克如, 李少昆 . 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017,50:2027-2035
doi: 10.3864/j.issn.0578-1752.2017.11.008
Wang K R, Li S K . Analysis of influencing factors on kernel dehydration rate of maize hybrids. Sci Agric Sin, 2017,50:2027-2035 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.11.008
[11] 冯东升, 高树仁, 杨克军 . 解析玉米籽粒脱水的动力问题. 中国种业, 2017, ( 10):35-36
Feng D S, Gao S R, Yang K J . Analysis of the dynamic problem of dehydration of corn grains. China Seed Ind, 2017, ( 10):35-36 (in Chinese with English abstract)
[12] 金益, 王振华, 张永林, 王殊华, 王云生 . 玉米杂交种蜡熟后籽粒自然脱水速率差异分析. 东北农业大学学报, 1997,28(1):29-32
Jin Y, Wang Z H, Zhang Y L, Wang S H, Wang Y S . Difference analysis on the natural dry rate of kernel after wax ripening maize hybrids. J Northeast Agric Univ, 1997,28(1):29-32 (in Chinese with English abstract)
[13] Brooking I R . Maize ear moisture during grain-filling, and its relation to physiological maturity and grain-drying. Field Crops Res, 1990,23:55-68
doi: 10.1016/0378-4290(90)90097-U
[14] 谭福忠, 韩翠波, 邹双利, 刘振江, 籍依安 . 极早熟玉米品种籽粒脱水特性的初步研究. 中国农学通报, 2008, ( 7):161-168
Tan F Z, Han C B, Zou S L, Liu Z J, Ji Y A . Elementary study on kernel dry-down traits in earliest-maturity maize hybrid. Chinese Agric Sci Bull, 2008, ( 7):161-168 (in Chinese with English abstract)
[15] Hallauer A R, Russell W A . Effects of selected weather factors on grain moisture reduction from silking to physiologic maturity in corn. Agron J, 1961,53:225-229
doi: 10.2134/agronj1961.00021962005300040006x
[16] Daynard T B, Kannenberg L W . Relationships between length of the actual and effective grain filling. Can J Plant Sci, 1976,56:237-242
doi: 10.4141/cjps76-038
[17] 向葵 . 玉米籽粒脱水速率测定方法优化及遗传研究. 四川农业大学博士学位论文,四川成都, 2011
Xiang K . Genetic Analysis and Measuring Method Development of Kernel Fast Dry Down Rate in Maize. PhD Dissertation of Sichuan Agricultural University, Chengdu, Sichuan,China, 2011 ( in Chinese with English abstract)
[18] Derieux M, Bonhomme R . Heat unit requirements for maize hybrids in Europe. Results of the European FAO sub-network: sowing-silking period. Maydica, 1992,27(2):59-77
doi: 10.1177/1524839913520546
[19] Cavalieri A J, Smith O S . Grain filling and field drying of a set of maize hybrids released from 1930 to 1982. Crop Sci, 1985,25:856-860
doi: 10.2135/cropsci1985.0011183X002500050031x
[20] 李璐璐 . 黄淮海夏玉米籽粒脱水特征研究. 中国农业科学院硕士学位论文,北京, 2017
Li L L . Study on grain dehydration characteristics of summer maize in Huang-Huai-Hai plain. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing,China, 2017 (in Chinese with English abstract)
[21] 李璐璐, 谢瑞芝, 范盼盼, 雷晓鹏, 王克如, 侯鹏, 李少昆 . 郑单958与先玉335子粒脱水特征研究. 玉米科学, 2016,24(2):57-61
Li L L, Xie R Z, Fan P P, Lei X P, Wang K R, Hou P, Li S K . Study on dehydration in kernel between Zhengdan 958 and Xianyu 335. J Maize Sci, 2016,24(2):57-61 (in Chinese with English abstract)
[22] 房世波 . 分离趋势产量和气候产量的方法探讨. 自然灾害学报, 2011,20(6):13-18
Fang S B . Exploration of method for discrimination between trend crop yield and climatic fluctuant yield. J Nat Disasters, 2011,20(6):13-18 (in Chinese with English abstract)
[23] 温晓慧, 温桂清, 薛敏 . 用直线滑动均值法做作物趋势产量预报. 黑龙江气象, 1994, ( 1):19-20
Wen X H, Wen G Q, Xue M . Prediction of crop trend yield using linear moving average method. Heilongjiang Meteorol, 1994, ( 1):19-20 (in Chinese with English abstract)
[24] 赵东妮, 王艳华, 任传友, 马熙达, 徐一丹, 陈伟 . 3 种水稻趋势产量拟合方法的比较分析. 中国生态农业学报, 2017,25:345-355
Zhao D N, Wang Y H, Ren C Y, Ma X D, Xu Y D, Chen W . Comparative analysis of three fitting methods of rice trend yield. Chin J Eco-Agric, 2017,25:345-355 (in Chinese with English abstract)
[25] 王媛, 方修琦, 徐锬 . 气候变化背景下“气候产量”计算方法的探讨. 自然资源学报, 2004,19:531-536
doi: 10.11849/zrzyxb.2004.04.016
Wang Y, Fang X Q, Xu T . A method for calculating the climatic yield of grain under climate change. J Nat Resour, 2004,19:531-536 (in Chinese with English abstract)
doi: 10.11849/zrzyxb.2004.04.016
[26] 郭梁, Wilkes A, 于海英, 许建初 . 中国主要农作物产量波动影响因素分析. 植物分类与资源学报, 2013,35:513-521
Guo L, Wilkes A, Yu H Y, Xu J C . Analysis of factors influencing yield variability of major crops in China. Plant Diversity Resour, 2013,35:513-521 (in Chinese with English abstract)
[27] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆 . 夏玉米籽粒脱水特性及与灌浆特性的关系. 中国农业科学, 2018,51:1878-1889
Li LL Ming Bo, Gao S, Xie R Z, Hou P, Wang K R, Li S K . Grain dehydration characters of summer maize and its relationship with grain filling. Sci Agric Sin, 2018,51:1878-1889 (in Chinese with English abstract)
[28] Richard G, Luis S P, Raes D, Smith M . Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation & Drainage Paper No.56, 1998.
[29] Ross J . Radiative transfer in plant communities. Vegetation & Atmosphere, 1975,1:13-55
[30] 明道绪 . 生物统计附试验设计(第3版). 北京: 中国农业出版社, 2009. pp 167-178
Ming D X. Biostatistics and experimental design, 3rd edn. Beijing: China Agriculture Press, 2009. pp 167-178(in Chinese)
[31] 任红松, 吕新, 曹连莆, 袁继勇 . 通径分析的SAS实现方法. 农业网络信息, 2003, ( 4):17-19
Ren H S, Lyu X, Cao L P, Yuan J Y . The implemented method of SAS in path analysis. Comput & Agric, 2003, ( 4):17-19 (in Chinese with English abstract)
[32] 李璐璐, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆 . 黄淮海夏玉米生理成熟期子粒含水率研究. 作物杂志, 2017, ( 2):88-92
doi: 10.16035/j.issn.1001-7283.2017.02.015
Li L L, Xie R Z, Wang K R, Ming B, Hou P, Li S K . Study on kernel moisture content of summer maize at physiological maturity in Huanghuaihai region. Crops, 2017, ( 2):88-92 (in Chinese with English abstract)
doi: 10.16035/j.issn.1001-7283.2017.02.015
[33] 张林, 王振华, 金益, 于天江 . 玉米收获期含水量的配合力分析. 西南农业学报, 2005,18(5):32-35
doi: 10.3969/j.issn.1001-4829.2005.05.006
Zhang L, Wang Z H, Jin Y, Yu T J . Combining ability analysis of water content in harvest stage in corn. Southwest China J Agric Sci, 2005,18(5):32-35 (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-4829.2005.05.006
[34] Nielsen R L. Field dry down of mature corn grain. Corny News Network: Purdue University Department of Agronomy, 2011[2018-06-08].
[35] 霍仕平 . 玉米灌浆期籽粒脱水速率的研究进展. 玉米科学, 1993, ( 4):39-44
Huo S P . Research progress of grain dehydration rate in maize during grain filling stage. J Maize Sci, 1993, ( 4):39-44 (in Chinese with English abstract)
[36] Schmidt J L, Hallauer A R . Estimating harvest date of corn in the field. Crop Sci, 1966,6:227-231
doi: 10.2135/cropsci1966.0011183X000600030003x
[1] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[2] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[3] LI Jing, WANG Hong-Zhang, LIU Peng, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao. Differences in photosynthetic performance of leaves at post-flowering stage in different cultivation modes of summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1351-1359.
[4] YANG Fan, ZHONG Xiao-Yuan, LI Qiu-Ping, LI Shu-Xian, LI Wu, ZHOU Tao, LI Bo, YUAN Yu-Jie, DENG Fei, CHEN Yong, REN Wan-Jun. Effects of delayed sowing and planting date on starch RVA profiles of different indica hybrid rice in the sub-suitable region of ratoon rice [J]. Acta Agronomica Sinica, 2021, 47(4): 701-713.
[5] XU Tian-Jun, LYU Tian-Fang, ZHAO Jiu-Ran, WANG Rong-Huan, ZHANG Yong, CAI Wan-Tao, LIU Yue-E, LIU Xiu-Zhi, CHEN Chuan-Yong, XING Jin-Feng, WANG Yuan-Dong, LIU Chun-Ge. Grain filling characteristics of summer maize varieties under different sowing dates in the Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2021, 47(3): 566-574.
[6] WANG Ke-Ru, LI Lu-Lu, GAO Shang, WANG Yi-Zhou, HUANG Zhao-Fu, XIE Rui-Zhi, MING Bo, HOU Peng, XUE Jun, ZHANG Guo-Qiang, HOU Liang-Yu, LI Shao-Kun. Analysis of main quality index of corn harvesting with combine in China [J]. Acta Agronomica Sinica, 2021, 47(12): 2440-2449.
[7] ZHOU Bao-Yuan, GE Jun-Zhu, SUN Xue-Fang, HAN Yu-Ling, MA Wei, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain [J]. Acta Agronomica Sinica, 2021, 47(10): 1843-1853.
[8] MA Zheng-Bo, DONG Xue-Rui, TANG Hui-Hui, YAN Peng, LU Lin, WANG Qing-Yan, FANG Meng-Ying, WANG Qi, DONG Zhi-Qiang. Effect of tetramethyl glutaric acid on summer maize photosynthesis characteristics [J]. Acta Agronomica Sinica, 2020, 46(10): 1617-1627.
[9] CHEN Xiao-Ying,LIU Peng,CHENG Yi,DONG Shu-Ting,ZHANG Ji-Wang,ZHAO Bin,REN Bai-Zhao,HAN Kun. The root-layer regulation based on the depth of phosphate fertilizer application of summer maize improves soil nitrogen absorption and utilization [J]. Acta Agronomica Sinica, 2020, 46(02): 238-248.
[10] ZHAO Bo,LI Xiao-Long,ZHOU Mao-Lin,SONG Bi,LEI En,LI Zhong,WU Ya-Wei,YUAN Ji-Chao,KONG Fan-Lei. Current status and influencing factors of broken rate in mechanical grain harvesting of maize in Southwest China [J]. Acta Agronomica Sinica, 2020, 46(01): 74-83.
[11] WAN Ze-Hua,REN Bai-Zhao,ZHAO Bin,LIU Peng,ZHANG Ji-Wang. Grain filling, dehydration characteristics and changes of endogenous hormones of summer maize hybrids differing in maturities [J]. Acta Agronomica Sinica, 2019, 45(9): 1446-1453.
[12] ZHAO Song-Chao,LI Yi-Fan,LIU Bo-Yuan,ZHAO Ming-Qin. Effects of air drying density on membranous lipid peroxidation and quality of cigar tobacco leaf [J]. Acta Agronomica Sinica, 2019, 45(7): 1090-1098.
[13] Zhao-Fu HUANG,Bo MING,Ke-Ru WANG,Rui-Zhi XIE,Fei YANG,Zhi-Gang WANG,Chun-Hua XIAO,Shao-Kun LI. Characteristics of maize grain dehydration and prediction of suitable harvest period in Liao River Basin [J]. Acta Agronomica Sinica, 2019, 45(6): 922-931.
[14] ZHOU Bao-Yuan,MA Wei,SUN Xue-Fang,DING Zai-Song,LI Cong-Feng,ZHAO Ming. Characteristics of annual climate resource distribution and utilization in high-yielding winter wheat-summer maize double cropping system [J]. Acta Agronomica Sinica, 2019, 45(4): 589-600.
[15] Chao GAO,Xue-Wen LI,Yan-Wei SUN,Ting ZHOU,Gang LUO,Cai CHEN. Spatiotemporal characteristics of water requirement and agricultural drought during summer maize season in Huaihe River Basin [J]. Acta Agronomica Sinica, 2019, 45(2): 297-309.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!