Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (12): 1782-1792.doi: 10.3724/SP.J.1006.2018.01782

• SPECIAL SECTION: GRAIN DEHYDRATION AND MECHANICAL GRAIN HARVEST OF MAIZE • Previous Articles     Next Articles

Changes of Maize Lodging after Physiological Maturity and Its Influencing Factors

Jun XUE1,Qun WANG2,Lu-Lu LI1,Wan-Xu ZHANG2,Rui-Zhi XIE1,Ke-Ru WANG1,Bo MING1,Peng HOU1,Shao-Kun LI1,*()   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China
    2 College of Agronomy, Shihezi University, Shihezi 832000, Xinjiang, China
  • Received:2018-02-06 Accepted:2018-07-20 Online:2018-12-12 Published:2018-08-03
  • Contact: Shao-Kun LI E-mail:lishaokun@caas.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0300101);This study was supported by the National Key Research and Development Program of China(2016YFD0300110);the National Natural Science Foundation of China(31371575);the China Agriculture Research System(CARS-02-25);the Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences

Abstract:

In view of the lodging problem during grain dehydration after physiological maturity in maize mechanical grain harvest, multi-sites experiments were conducted to investigate the lodging type and law and their influencing factors in summer maize and spring maize after physiological maturity. The increase of stalk lodging rate was the major reason for total lodging rate increase after physiological maturity. The stalk lodging rate increased as breaking force decreased. The stalk lodging rate was more than 5% when breaking force decreased to 14.3 N. All of height of gravity center, rind penetration strength (RPS) of the third internode, crushing strength (CS) of the fourth internode, and bending strength (BS) of the fifth internode gradually decreased after physiological maturity. Both dry weight per unit length (DWUL) and moisture content of the basal internode also gradually decreased. Stalk breaking force was significantly positively correlated with RPS, CS, BS, DWUL, and moisture content of the basal internode. RPS, CS, BS were significantly positively correlated with DWUL and moisture content. This study showed that natural senescence of maize after physiological maturity decreases the dry matter and moisture content, resulting in the decrease of stalk mechanical strength, and the increase of stalk lodging. The ability of stalk continuous standing after physiological maturity should be used as one of the important indices to measure which maize cultivar is fit for mechanical grain harvest. Harvesting at optimal time could prevent lodging after physiological maturity and reduce grain loss in mechanical grain harvest.

Key words: maize, lodging, physiological maturity, stalk strength, dry weight, moisture content

Table 1

Experimental cultivars"

Table 2

Lodging rate of maize cultivars after physiological maturity"

品种
Cultivar
总倒伏率 Total lodging rate (%) 茎折率 Stalk lodging rate (%) 根倒率 Root lodging rate (%)
Oct. 27 Nov. 10 Nov. 25 Dec. 6 Oct. 27 Nov. 10 Nov. 25 Dec. 6 Oct. 27 Nov. 10 Nov. 25 Dec. 6
辽单586 Liaodan 586 1.7 11.3 12.1 12.5 1.7 11.3 12.1 12.1 0 0 0 0.4
辽单585 Liaodan 585 0 1.3 2.9 4.8 0 0.4 2.0 3.9 0 0.9 0.9 0.9
辽单575 Liaodan 575 2.3 5.6 23.0 23.2 1.2 1.6 19.1 19.3 1.1 4.0 4.0 4.0
MC 670 0 0.5 3.9 5.6 0 0.5 3.9 5.6 0 0 0 0
恒育898 Hengyu 898 0.5 1.2 2.2 2.2 0.5 1.2 2.2 2.2 0 0 0 0
宇玉30 Yuyu 30 4.6 7.5 10.6 15.7 0.7 2.2 3.0 8.1 4.0 5.3 7.6 7.6
裕丰303 Yufeng 303 25.3 28.0 37.9 37.9 1.2 1.2 7.0 7.0 24.1 26.8 30.9 30.9
联创808 Lianchuang 808 4.8 28.1 82.8 86.9 0 1.4 4.8 7.3 4.8 26.7 78.0 79.5
品种
Cultivar
总倒伏率 Total lodging rate (%) 茎折率 Stalk lodging rate (%) 根倒率 Root lodging rate (%)
Oct. 27 Nov. 10 Nov. 25 Dec. 6 Oct. 27 Nov. 10 Nov. 25 Dec. 6 Oct. 27 Nov. 10 Nov. 25 Dec. 6
联创825 Lianchuang 825 47.8 63.1 71.1 71.1 0 0 0 0 47.8 63.1 71.1 71.1
利单295 Lidan 295 1.9 3.4 18.3 24.4 0.6 1.9 15.5 21.6 1.3 1.5 2.8 2.8
LA 505 1.0 2.6 5.3 11.4 0 1.5 3.9 5.2 1.0 1.0 1.4 6.3
北斗309 Beidou 309 8.2 11.9 32.6 33.5 1.7 4.5 23.9 24.7 6.4 7.4 8.8 8.8
豫单9953 Yudan 9953 3.5 3.5 7.5 25.7 0 0 2.1 17.3 3.5 3.5 5.4 8.5
新单58 Xindan 58 4.6 6.1 10.6 20.8 0.4 0.5 4.0 14.2 4.3 5.6 6.6 6.6
新单65 Xindan 65 0 0 1.0 11.5 0 0 1.0 6.2 0 0 0 5.3
新单68 Xindan 68 0 0.7 2.5 50.6 0 0.7 2.5 50.6 0 0 0 0
农华5号 Nonghua 5 74.6 74.8 80.9 80.9 0.3 0.5 0.8 0.8 74.3 74.3 80.1 80.1
农华816 Nonghua 816 7.0 7.6 18.0 20.6 0.8 1.4 11.7 13.7 6.2 6.2 6.2 6.9
迪卡517 Dika 517 0.4 1.0 7.7 8.2 0.4 1.0 7.7 8.2 0 0 0 0
迪卡653 Dika 653 0.4 0.4 2.9 2.9 0 0 2.5 2.5 0.4 0.4 0.4 0.4
陕单636 Shaandan 636 0.7 4.2 6.3 22.2 0.7 0.9 1.4 16.9 0 3.3 5.0 5.2
陕单650 Shaandan 650 3.8 4.5 10.2 12.1 0 0.3 4.9 6.7 3.8 4.2 5.3 5.3
泽玉501 Zeyu 501 0.8 1.7 2.9 4.5 0.6 0.8 2.0 3.6 0.2 0.9 0.9 0.9
泽玉8911 Zeyu 8911 0 0 0 0 0 0 0 0 0 0 0 0
吉单66 Jidan 66 2.4 3.8 15.0 16.5 2.1 2.4 13.6 15.1 0.4 1.4 1.4 1.4
东单913 Dongdan 913 1.4 2.7 5.5 8.7 0 0 2.5 5.7 1.4 2.7 3.0 3.0
金通152 Jintong 152 2.2 5.6 51.7 54.9 0 1.6 43.7 45.2 2.2 4.0 8.0 9.6
中科玉505 Zhongkeyu 505 72.3 83.8 84.4 90.1 3 0.4 0.8 6.2 72.0 83.4 83.6 83.9
平均值 Average 9.7 b 13.0 ab 21.8 ab 27.1 a 0.5 c 1.4 c 7.1 b 11.8 a 9.3 a 11.7 a 14.7 a 15.3 a
最大值 Maximum 74.6 83.8 84.4 90.1 2.1 11.3 43.7 50.6 74.3 83.4 83.6 83.9
最小值 Minimum 0 0 0 0 0 0 0 0 0 0 0 0
变异系数 CV (%) 210.4 174.9 123.8 98.4 130.1 159.3 132.8 103.3 221.4 197.6 184.6 176.4

Fig. 1

Changes in stalk breaking force of maize after physiological maturity Fig. A shows the summer maize in Xinxiang, Fig. B show the spring maize in Qitai. The main box called IQR contains fifty percent samples in Box-whisker Plot (Fig. B). The two sidelines mean the reasonable sample border in Tukey method. The solid line in box positions the median sample. The hidden line stands for the average. The circle stands for the outlier. Values is the average for all cultivars in same sampling location and different sampling dates in Fig. B. Values within the same sampling location followed by different lowercase letters are significantly different at P<0.05."

Table 3

Percentage of maize stalk broken at different positions"

玉米季
Maize season
试验地点
Experimental site
占总折断率的比例 Percentage in total stalk broken rate (%)
第2节
Second internode
第3节
Third internode
第4节
Fourth internode
第5节
Fifth internode
其他
Others
夏玉米
Summer maize
河南新乡
Xinxiang, Henan
18.6 42.9 24.1 7.8 6.1
春玉米
Spring maize
新疆奇台
Qitai, Xinjiang
17.0 30.4 27.4 15.6 9.6

Fig. 2

Relationship between maize stalk breaking force and stalk lodging rate ** Correlation is significant at the 0.01 probability level."

Fig. 3

Changes in the height of gravity center of maize after physiological maturity Height of gravity center indexed with different lowercase letters are significantly different at P < 0.05."

Fig. 4

Changes in mechanical strength of maize basal internode after physiological maturity Fig. A, Fig. C, and Fig. E show summer maize in Xinxiang, Henan. Fig. B, Fig. D, and Fig. F show spring maize in Qitai, Xinjiang. RPS is rind penetration strength, CS is crushing strength, and BS is bending strength. Values within the same sampling location indexed with different lowercase letters are significantly different at P < 0.05."

Fig. 5

Changes in dry weight per unit length (DWUL) of maize basal internode after physiological maturity Fig. A, Fig. C, and Fig E show summer maize in Xinxiang, Henan. Fig. B, Fig. D, and Fig. F show spring maize in Qitai, Xinjiang. DWUL is dry weight per unit length. Values within the same sampling location indexed with different lowercase letters are significantly different at P < 0.05."

Fig. 6

Changes in moisture content of maize basal internode after physiological maturity Fig. A, Fig. C, and Fig E show summer maize in Xinxiang, Henan. Fig. B, Fig. D, and Fig. F show spring maize in Qitai, Xinjiang. Values within the same sampling location indexed with different lowercase letters are significantly different at P < 0.05."

Table 4

Correlation coefficients among breaking force, mechanical strength, dry matter accumulation and moisture content of maize stalk after physiological maturity"

指标
Indicator
抗折断力
Breaking force
穿刺强度
Rind penetration strength
压碎强度
Crushing strength
弯曲强度
Bending strength
穿刺强度Rind penetration strength 0.6552**
压碎强度Crushing strength 0.6562** 0.7253**
弯曲强度Bending strength 0.7373** 0.5908** 0.6758**
单位长度干重 Dry weight per unit length 0.7356** 0.5432** 0.5836** 0.7311**
含水率Moisture content 0.5096** 0.4914** 0.4430** 0.5155**
[1] 李树岩, 马玮, 彭记永, 陈忠民 . 大喇叭口及灌浆期倒伏对夏玉米产量损失的研究. 中国农业科学, 2015,48:3952-3964
Li S Y, Ma W, Peng J Y, Chen Z M . Study on yield loss of summer maize due to lodging at the big flare stage and grain filling stage. Sci Agric Sin, 2015,48:3952-3964 (in Chinese with English abstract)
[2] Pellerin S, Trendel R, Duparque A . Relationship between morphological characteristics and lodging susceptibility of maize (Zea mays L.). Agronomie, 1990,10:439-446
doi: 10.1051/agro:19900601
[3] Elmore R W, Ferguson R B . Mid-season stalk breakage in corn: Hybrid and environmental factors. J Prod Agric, 1999,12:293-299
doi: 10.2134/jpa1999.0293
[4] 黄璐, 乔江方, 刘京宝, 夏来坤, 朱卫红, 李川, 周庆伟 . 夏玉米不同密植群体抗倒性及机收指标探讨. 华北农学报, 2015,30(2):198-201
doi: 10.7668/hbnxb.2015.02.034
Huang L, Qiao J F, Liu J B, Xia L K, Zhu W H, Li C, Zhou Q W . Research on the relationship between maize lodging resistance and grain mechanically harvesting qualities in different planting density. Acta Agric Boreali-Sin, 2015,30(2):198-201 (in Chinese with English abstract)
doi: 10.7668/hbnxb.2015.02.034
[5] 李少昆, 王克如, 谢瑞芝, 侯鹏, 明博, 杨小霞, 韩冬升, 王玉华 . 实施密植高产机械化生产实现玉米高产高效协同. 作物杂志, 2016, ( 4):1-6
Li S K, Wang K R, Xie R Z, Hou P, Ming B, Yang X X, Han D S, Wang Y H . Implementing higher population and full mechanization technologies to achieve high yield and high efficiency in maize production. Crops, 2016, ( 4):1-6 (in Chinese with English abstract)
[6] 谢瑞芝, 雷晓鹏, 王克如, 郭银巧, 柴宗文, 侯鹏, 李少昆 . 黄淮海夏玉米子粒机械收获研究初报. 作物杂志, 2014, ( 2):76-79
Xie R Z, Lei X P, Wang K R, Guo Y Q, Chai Z W, Hou P, Li S K . Research on corn mechanically harvesting grain quality in Huanghuaihai plain. Crops, 2014, ( 2):76-79 (in Chinese with English abstract)
[7] 李璐璐, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆 . 黄淮海夏玉米生理成熟期子粒含水率研究. 作物杂志, 2017, ( 2):88-92
doi: 10.16035/j.issn.1001-7283.2017.02.015
Li L L, Xie R Z, Wang K R, Ming B, Hou P, Li S K . Kernel moisture content of summer maize at physiological maturity stage in Huanghuaihai region. Crops, 2017, ( 2):88-92 (in Chinese with English abstract)
doi: 10.16035/j.issn.1001-7283.2017.02.015
[8] 李少昆 . 玉米机械粒收质量影响因素及粒收技术发展方向. 石河子大学学报(自然科学版), 2017,35:265-272
Li S K . Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology. J Shihezi Univ (Nat Sci), 2017,35:265-272 (in Chinese with English abstract)
[9] 王克如, 李少昆 . 玉米机械粒收破碎率研究进展. 中国农业科学, 2017,50:2018-2026
doi: 10.3864/j.issn.0578-1752.2017.11.007
Wang K R, Li S K . Progresses in research on grain broken rate by mechanical grain harvesting. Sci Agric Sin, 2017,50:2018-2026 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.11.007
[10] Bruns H A, Abbas H K . Effects of harvest date on maize in the humid sub-tropical Mid-South USA. Maydica, 2004,49(1):1-7
doi: 10.1017/S0024282904014124
[11] Thomison P R, Mullen R W, Lipps P E, Doerge T, Geyer A B . Corn response to harvest date as affected by plant population and hybrid. Agron J, 2011,103:1765-1772
doi: 10.2134/agronj2011.0147
[12] Alien R R, Musick J T, Hollingsworth L D . Topping corn and delaying harvest for field drying. Trans ASABE, 1982,5:1529-1532
doi: 10.13031/2013.33760
[13] Nolte B H, Byg D M, Gill W E . Timely field operations for corn and soybeans in Ohio. The Ohio State University Cooperative Extension Service Bulletin 605,March, 1976
[14] 中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会. 玉米收获机械技术条件: GB/T 21962-2008
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China; China National Standardization Management Committee. Technical Requirements for Maize Combine Harvester: GB/T 21962-2008 (in Chinese with English abstract)
[15] Xue J, Gou L, Zhao Y, Yao M, Yao H, Tian J, Zhang W F . Effects of light intensity within the canopy on maize lodging. Field Crops Res, 2016,188:133-141
doi: 10.1016/j.fcr.2016.01.003
[16] Xue J, Zhao Y, Gou L, Shi Z, Yao M, Zhang W . How high plant density of maize affects basal internode development and strength formation. Crop Sci, 2016,56:3295-3306
doi: 10.2135/cropsci2016.04.0243
[17] Xue J, Gou L, Shi Z G, Zhao Y S, Zhang W F . Effect of leaf removal on photosynthetically active radiation distribution in maize canopy and stalk strength. J Integr Agric, 2017,16:85-96
doi: 10.1016/S2095-3119(16)61394-1
[18] Xue J, Xie R Z, Zhang W F, Wang K R, Hou P, Ming B, Gou L, Li S K . Research progress on reduced lodging of high-yield and -density maize. J Integr Agric, 2017,16:2717-2725
doi: 10.1016/S2095-3119(17)61785-4
[19] 勾玲, 黄建军, 张宾, 李涛, 孙锐, 赵明 . 群体密度对玉米茎秆抗倒力学和农艺性状的影响. 作物学报, 2007,33:1688-1695
doi: 10.3321/j.issn:0496-3490.2007.10.019
Gou L, Huang J J, Zhang B, Li T, Sun R, Zhao M . Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize. Acta Agron Sin, 2007,33:1688-1695 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2007.10.019
[20] Robertson D, Smith S, Gardunia B, Cook D . An improved method for accurate phenotyping of corn stalk strength. Crop Sci, 2014,54:2038-2044
doi: 10.2135/cropsci2013.11.0794
[21] Novacek M J, Mason S C, Galusha T D, Yaseen M . Twin rows minimally impact irrigated maize yield, morphology, and lodging. Agron J, 2013,105:268-276
doi: 10.2134/agronj2012.0301
[22] 边大红, 刘梦星, 牛海峰, 魏钟博, 杜雄, 崔彦宏 . 施氮时期对黄淮海平原夏玉米茎秆发育及倒伏的影响. 中国农业科学, 2017,50:2294-2304
doi: 10.3864/j.issn.0578-1752.2017.12.010
Bian D H, Liu M X, Niu H F, Wei Z B, Du X, Cui Y H . Effects of nitrogen application times on stem traits and lodging of summer maize (Zea mays L.) in the Huang-Huai-Hai Plain. Sci Agric Sin, 2017,50:2294-2304 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.12.010
[23] Anderson B, White D . Evaluation of methods for identification of corn genotypes with stalk rot and lodging resistance. Plant Dis, 1994,78:590-593
doi: 10.1094/PD-78-0590
[24] Chen Y, Chen J, Zhang Y, Zhou D . Effect of harvest date on shearing force of maize stems. Livestock Sci, 2007,111:33-44
doi: 10.1016/j.livsci.2006.11.013
[25] Yu C, Saravanakumar K, Xia H, Gao J, Fu K, Sun J, Dou K, Jie C . Occurrence and virulence of Fusarium spp. associated with stalk rot of maize in North-East China. Physiol Mol Plant Pathol, 2017,98:1-8
doi: 10.1016/j.pmpp.2016.12.004
[26] 王亮, 丰光, 李妍妍, 景希强, 黄长玲 . 玉米倒伏与植株农艺性状和病虫害发生关系的研究. 作物杂志, 2016, ( 2):83-88
doi: 10.16035/j.issn.1001-7283.2016.02.015
Wang L, Feng G, Li Y Y, Jing X Q, Huang C L . Relationship between maize lodging resistance and agronomic traits, plant diseases, and insect pests. Crops, 2016, ( 2):83-88 (in Chinese with English abstract)
doi: 10.16035/j.issn.1001-7283.2016.02.015
[27] 杨扬, 杨建宇, 李绍明, 张晓东, 朱德海, 刘哲, 米春桥, 肖开能 . 玉米倒伏胁迫影响因子的空间回归分析. 农业工程学报, 2011,27(6):244-249
doi: 10.3969/j.issn.1002-6819.2011.06.044
Yang Y, Yang J Y, Li S M, Zhang X D, Zhu D H, Liu Z, Mi C Q, Xiao K N . Spatial regression analysis on influence factors of maize lodging stress. Trans CSAE, 2011,27(6):244-249 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2011.06.044
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[14] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[15] LOU Hong-Xiang, JI Jian-Li, KUAI Jie, WANG Bo, XU Liang, LI Zhen, LIU Fang, HUANG Wei, LIU Shu-Yan, YIN Yu-Feng, WANG Jing, ZHOU Guang-Sheng. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(9): 1724-1740.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!