Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (12): 1793-1801.doi: 10.3724/SP.J.1006.2018.01793

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Characterization of Brassinazole-resistant (BnaBZR1 and BnaBES1) CDS from Brassica napus L.

Tao FENG,Chun-Yun GUAN()   

  1. College of Agronomy, Hunan Agricultural University / National Oilseed Crops Improvement Center in Hunan, Changsha 410128, Hunan, China
  • Received:2018-05-03 Accepted:2018-08-20 Online:2018-12-12 Published:2018-09-19
  • Contact: Chun-Yun GUAN E-mail:guancy2011@aliyun.com
  • Supported by:
    This study was supported by the National Basic Research Program (973 Program).(2015CB150206)

Abstract:

Brassinazole-resistant (BZR) is a key transcription factor in brassinosteroid signaling pathway of plants, containing brassinazole-resistant 1 (BZR1) and brassinazole-resistant 2 (BES1). In this study, three novel BZR1 coding sequences (CDSs) were isolated from cDNA of Brassica napus L. cv. Xiangyou 15 leaves, which were mapped on the chromosomes A07, A06, and A06, and designated as BnaBZR1_A07, BnaBES1_A06F, and BnaBES1_A06R, respectively. These three BnaBZR CDSs were 996, 993, and 996 bp in length and encoded predicted proteins with 331, 330, and 331 amino acid residues, respectively. BnaBZR proteins were predicted to be located on the cell nucleus and have a typical plant BZR/BES conserved domain. Multiple sequence alignments and phylogenetic analysis showed that the deduced amino acid sequences of BnaBZR were highly homologous to previously reported BZR/BES of Brassica oleracea, Arabidopsis thalian, and Eruca sativa. And the similarity of BZR1 or BES1 among different related species was higher than the similarity between BZR1 and BES1 in the same species or related species, indicating that BZR1 and BES1 differentiation is an early evolutionary event. The expression patterns of BnaBZR1_A07, BnaBES1_A06F, and BnaBES1_A06R in Xiangyou 15 were similar, whit high expression level at the seedling stage and flowering stage, while slightly lower level at the stage of bolting and podgrain ripening. The expression level of BnaBZR in the aerial parts such as leaves, stems, flowers and pods was higher than that in underground parts.

Key words: Brassica napus L., BZR, gene clone, gene expression, bionformatic analysis

Fig. 1

Cloning of BnaBZR1_A07, BnaBES1_A06F, and BnaBES1_A06R M: 2K DNA marker; 1: BnaBZR1_A07CDS; 2: BnaBES1_A06F CDS; 3: BnaBES1_A06R CDS."

Table 1

Summary of the deduced BnaBZR1, BnaBES1_F, and BnaBES1_R proteins"

蛋白编号
Serial number
氨基酸残基数
Base of amino acid residues
摩尔质量
Molar mass (Da)
等电点
Isoelectric point
BnaBZR1_A07 331 35 895.131 9.145
BnaBES1_A06F 330 36 071.176 9.745
BnaBES1_A06R 331 36 177.322 9.745

Fig. 2

Secondary structure of BnaBZR1_A07, BnaBES1_A06F, and BnaBES1_A06R"

Table 2

Summary of specific region of BnaBZR1_A07, BnaBES1_A06F, and BnaBES1_A06R"

蛋白编号
Serial number
位点类型
Domains type
数量
Number
位置
Location
序列
Sequence
序列模式
Sequence motif
BnaBZR1_A07 PS00001 2 142-145, 143-146 NNSS, NSST N-{P}-[ST]-{P}
PS00004 1 21-24 RKPS [RK](2)-x-[ST]
PS00005 5 24-26, 84-86, 162-164, 179-181, 221-223 SWR, TYR, SLR, TSK, THR [ST]-x-[RK]
PS00006 4 24-27, 236-239, 230-233, 240-243 SWRE, SRGE, TIPE, STVD [ST]-x(2)-[DE]
PS00008 4 5-10, 154-159, 155-160, 325-330 GATSTS, GGIPSS, GIPSSSL, GNGKAR G-{EDRKHPFYW}-x(2)-[STAGCN]-{P}
BnaBES1_A06F PS00001 1 138-141 NIST N-{P}-[ST]-{P}
PS00004 1 20-23 RKPS [RK](2)-x-[ST]
蛋白编号
Serial number
位点类型
Domains type
数量
Number
位置
Location
序列
Sequence
序列模式
Sequence motif
BnaBES1_A06R PS00005 5 18-20, 23-25, 83-85, 99-101, 174-176 TRR, SWR, TYR, SSR, TNK [ST]-x-[RK]
PS00006 6 23-26, 112-115, 134 -137, 227 -230, 237-240, 305-308 SWRE, SPFE, SRGD, TIPE, STVD, TPWE [ST]-x(2)-[DE]
PS00008 5 5-10, 149-154, 150-155, 259-264, 325-330 GATSTS, GGIPSS, GIPSSL, GVSSAV, GNAKGR G-{EDRKHPFYW}-x(2)-[STAGCN]-{P}
PS00016 1 135-137 RGD R-G-D
PS00001 1 139-142 NIST N-{P}-[ST]-{P}
PS00004 1 21-24 RKPS [RK](2)-x-[ST]
PS00005 5 18-20, 24-26, 84-86, 100-102, 175-177 TRR, SWR, TYR, SSR, TSK [ST]-x-[RK]
PS00006 6 24-27, 113-116, 135-138, 228-231, 238-241, 306-309 SWRE, SPFE, SRGD, TIPE, STVD, TPWE [ST]-x(2)-[DE]
PS00008 5 5-10, 150-155, 151-156, 260-265, 326-331 GATSTS, GGIPSS, GIPSSL, GVSSAV, GNAKGR G-{EDRKHPFYW}-x(2)-[STAGCN]-{P}
PS00016 1 136-138 RGD R-G-D

Fig. 3

Comparison of the amino acid sequences of BnaBZR"

Fig. 4

Phylogenetic analysis of BZR/BES in different plant species"

Fig. 5

BnaBZR1_A07, BnaBES1_A06F, and BnaBES1_A06R expression in root, stem, leaf, flower, and silique DAG means days after seed germination."

[1] Wang Z Y, Bai M Y, Oh E, Zhu J Y . Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet, 2012,46:701-724
doi: 10.1146/annurev-genet-102209-163450 pmid: 23020777
[2] Gallego-Bartolomé J, Minguet E G, Grau-Enguix F, Abbas M, Locascio A, Thomas S G, Blázquez M A . Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proc Natl Acad Sci USA, 2012,109:13446-13451
[3] Peleg Z, Blumwald E . Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol, 2011,14:290-295
doi: 10.1016/j.pbi.2011.02.001 pmid: 21377404
[4] Wang W, Bai M Y, Wang Z Y . The brassinosteroid signaling network: a paradigm of signal integration. Curr Opin Plant Biol, 2014,21:147-153
doi: 10.1016/j.pbi.2014.07.012 pmid: 25139830
[5] Sun Y, Fan X Y, Cao D M, Tang W, He K, Zhu J Y, Patil S . Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell, 2010,19:765-777
doi: 10.1016/j.devcel.2010.10.010 pmid: 3018842
[6] Tong H, Chu C . Brassinosteroid signaling and application in rice. J Genet Genomics, 2012,39:3-9
doi: 10.1016/j.jgg.2011.12.001 pmid: 22293112
[7] Efimova M V, Savchuk A L, Hasan J A K, Litvinovskaya R P, Khripach V A, Kholodova V P, Kuznetsov V V . Physiological mechanisms of enhancing salt tolerance of oilseed rape plants with brassinosteroids. Russ J Plant Physiol, 2014,61:733-743
doi: 10.1134/S1021443714060053
[8] Skoczowski A, Janeczko A, Gullner G, Tóbias I, Kornas A, Barna B . Response of brassinosteroid-treated oilseed rape cotyledons to infection with the wild type and HR-mutant of Pseudomonas syringae or with P. fluorescence. J Thermanal Calor, 2011,104:131-139
[9] Pokotylo I V, Kretynin S V, Khripach V A, Ruelland E, Blume Y B, Kravets V S . Influence of 24-epibrassinolide on lipid signalling and metabolism in Brassica napus. Plant Growth Regul, 2014,73:9-17
doi: 10.1007/s10725-013-9863-y
[10] Sahni S, Prasad B D, Liu Q, Grbic V, Sharpe A, Singh S P, Krishna P . Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci Rep, 2016,6:28298
doi: 10.1038/srep28298 pmid: 4915011
[11] Lachowiec J, Mason G A, Schultz K, Queitsch C . Redundancy, feedback, and robustness in the Arabidopsis thaliana BZR/BEH gene family. BioRxiv, 2016: 053447
[12] Qiao S, Sun S, Wang L, Wu Z, Li C, Li X, Wang X . The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture. Plant Cell, 2017,29:292-309
doi: 10.1105/tpc.16.00611 pmid: 28100707
[13] Surhone L M, Timpledon M T, Marseken S F. Rapeseed. Germany: Betascript Publishing, 2010. pp 6-8
[14] Hao J, Yin Y, Fei S . Brassinosteroid signaling network: implications on yield and stress tolerance. Plant Cell Rep, 2013,32:1017-1030
doi: 10.1007/s00299-013-1438-x
[15] 李玲, 李俊, 张春雷, 张树杰, 马霓, 李光明 . 外源 ABA 和 BR 在提高油菜幼苗耐渍性中的作用. 中国油料作物学报, 2012,34:489-495
Li L, Li J, Zhang C L, Zhang S J, Ma L, Li G M . Effects of exogenous ABA and BR on waterlogging resistance of juvenile rapeseed. Chin J Oil Crop Sci, 2012,34:489-495 (in Chinese with English abstract)
[16] Yang D L, Yang Y, He Z . Roles of plant hormones and their interplay in rice immunity. Mol Plant, 2013,6:675-685
doi: 10.1093/mp/sst056 pmid: 23589608
[17] Zheng Q, Liu J, Liu R, Wu H, Jiang C, Wang C, Guan Y . Temporal and spatial distributions of sodium and polyamines regulated by brassinosteroids in enhancing tomato salt resistance. Plant Soil, 2016,400:147-164
doi: 10.1007/s11104-015-2712-1
[18] 王庆燕, 管大海, 潘海波, 李建民, 段留生, 张明才, 李召虎 . 油菜素内酯对春玉米灌浆期叶片光合功能与产量的调控效应. 作物学报, 2015,41:1557-1563
Wang Q Y, Guan D H, Pan H B, Li J M, Duan L S, Zhang M C, Li Z H . Effect of brassinolide on leaf photosynthetic function and yield in spring maize filling stage. Acta Agron Sin, 2015,41:1557-1563 (in Chinese with English abstract)
[19] Hayat S, Alyemeni M N, Hasan S A . Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Biol Sci, 2012,19:325-335
doi: 10.1016/j.sjbs.2012.03.005 pmid: 23961193
[20] Fridman Y, Savaldi-Goldstein S . Brassinosteroids in growth control: how, when and where. Plant Sci, 2013,209:24-31
doi: 10.1016/j.plantsci.2013.04.002 pmid: 23759100
[1] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[2] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[3] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[4] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[5] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[6] WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449.
[7] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
[8] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[9] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[10] QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786.
[11] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[12] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[13] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[14] HUANG Su-Hua, LIN Xi-Yue, LEI Zheng-Ping, DING Zai-Song, ZHAO Ming. Physiological characters of carbon, nitrogen, and hormones in ratooning rice cultivars with strong regeneration ability [J]. Acta Agronomica Sinica, 2021, 47(11): 2278-2289.
[15] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!