Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (2): 187-196.doi: 10.3724/SP.J.1006.2021.01045

• REVIEW •     Next Articles

Research advance on calcium content in wheat grains

LIU Yu-Xiu1(), HUANG Shu-Hua2, WANG Jing-Lin1, ZHANG Zheng-Mao1,*()   

  1. 1College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    2College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2020-06-02 Accepted:2020-09-25 Online:2021-02-12 Published:2020-11-19
  • Contact: ZHANG Zheng-Mao E-mail:yxliu@nwsuaf.edu.cn;zhzhm@nwsuaf.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD0102004);Natural Science Basic Research Plan in Shaanxi Province of China(2019JQ-542)


Increasing the mineral content is becoming the important research direction and major target for crops breeding in the world. Calcium is an essential mineral element for human health and plays a pivotal role in skeletogenesis and metabolism. It is estimated that about 3.5 billion people was suffered from calcium deficiencies. Calcium deficiency has become a major international problem harming human health. The staple food is an optimal and safe way to mineral supplement. Wheat, one of the main food crops in China and even in the world, is the main source of food for 35%-40% of global population, a main source for human’s calcium intake as well as an important crop of mineral element biofortification. Improving the calcium content in wheat grains through genetic improvement is considered to be the most economical, effective and sustainable measure to solve the calcium deficiency, which has aroused great concern from international scholars. This paper summarized the recent advances in the study of calcium content in wheat grains, mainly including the genetic variation, affecting factors, the relationship with related traits and regulation mechanism of calcium content in grain. Furthermore, we also put forward the direction of future research on calcium-fortified wheat, which provides solutions for accelerating the effective calcium supplementation through staple food, promoting the healthy and nutritious dietary pattern, ensuring the food security to meet the transition from “quantitative” to “qualitative” demands, improving people’s health, and reducing economic losses caused by calcium deficiency.

Key words: wheat, calcium content in grain, calcium fortification

Table 1

Summary of QTL detected for calcium content in wheat grains"

Position (cM or bp)
Molecular marker or interval marker
1A 31.7 ± 26.7 gwm3083 RILs群体RILs population Peleg et al.[73]
4A 28.7 ± 2.4 gwm610
6A 106.9 ± 20.2 wPt-0139
2B 86.5 ± 6.9 wPt-6576
4B 88.1 ± 9.7 wPt-9393
5B 54.2 ± 5.9 gwm371
6B 22.6 ± 28.1 wPt-11506
6B 145.4 ± 20.7 gwm219
7B 23.0 ± 7.8 gwm263
1A 10.1-10.9 P3156.2-WMC59 DHs群体DHs population Shi et al.[74]
2A 15.7-16.6 WMC27.2-P5166.2
7B 0-9.7 P1123.2-Xgwm611
2D 1.5-20.8 WMC41-WMC170
2Aa 64.3 RAC875_c24517_558, Kukri_c40035_258, AX-94881950, AX-94850365, AX-94560505, AX-94544896, AX-94404038 自然群体Natural population Alomari et al.[30]
2Aa 66.6 BS00049644_51, AX-95169653, AX-94940052, AX-94536561
3Aa 109 RFL_Contig1175_354
5Aa 117.7 wsnp_Ex_c20899_30011827, AX-95077733
5Aa 115.5 RAC875_c8642_231
6Aa 37.3 wsnp_Ex_c17575_26300030, wsnp_Ex_c17575_26299925, Tdurum_contig62141_496, Kukri_rep_c104648_439, Kukri_c35661_63, AX-94415776
5Ba 75.5 GENE-0168_7
5Ba 78.7 RAC875_c30011_426, BS00062731_51
5Ba 100.9 AX-94547820, AX-94452355
5Ba 101.7 AX-94541836
5Ba 103.2 AX-94644169
5Ba 149.8 snp_CAP8_c1210_739429, CAP7_c5481_96
5Da 167 Jagger_c8037_96
Position (cM or bp)
Molecular marker or interval marker
3A 593702925 S3A_593702925 人工合成六倍体小麦群体
A population of synthetic
hexaploid wheat
Bhatta et al.[21]
6A 50345873 S6A_50345873
6A 592562315 S6A_592562315
7A 34297426 S7A_34297426
1B 6867825 S1B_6867825
2B 502127437 S2B_502127437
3B 548275272 S3B_548275272
3B 655010350 S3B_655010350
6B 109760004 S6B_109760004
6B 32333184 S6B_32333184
6B 576856920 S6B_576856920
6B 658724336 S6B_658724336
2D 631996199 S2D_631996199
3D 45073985 S3D_45073985
[1] Weaver C M, Peacock M. Calcium. Adv Nutr, 2019,10:546-548.
doi: 10.1093/advances/nmy086 pmid: 30915443
[2] Kumssa D B, Joy E J M, Ander E L, Watts M J, Young S D, Walker S, Broadley M R. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Sci Rep, 2015,5:10974.
doi: 10.1038/srep10974 pmid: 26098577
[3] Gomez-Coronado F, Almeida A S, Santamaria O, Cakmak I, Poblaciones M J. Potential of advanced breeding lines of bread making wheat to accumulate grain minerals (Ca, Fe, Mg and Zn) and low phytates under Mediterranean conditions. J Agron Crop Sci, 2019,205:341-352.
[4] 顾景范. 《中国居民营养与慢性病状况报告(2015)》解读. 营养学报, 2016,38:525-529.
Gu J F. Interpretation of “Report on Nutrition and Chronic Diseases of Chinese Residents (2015)”. Acta Nutr Sin, 2016,38:525-529 (in Chinese).
[5] Bouillon R, Antonio L. Nutritional rickets: historic overview and plan for worldwide eradication. J Steroid Biochem, 2020,198:105563.
[6] 邱贵兴. 老年骨质疏松性骨折的治疗策略. 中华老年骨科与康复电子杂志, 2015,1(1):1-5.
Qiu G X. Treatment strategies for osteoporotic fractures in the elderly. Chin J Geriatr Orthop Rehabil (Electronic Edn), 2015,1(1):1-5 (in Chinese).
[7] Weaver C M, Heaney R P. Calcium in Human Health. Totowa, New Jersey: Humana Press, 2006. pp 1-3.
[8] Benjakul S, Karnjanapratum S. Characteristics and nutritional value of whole wheat cracker fortified with tuna bone bio-calcium powder. Food Chem, 2018,259:181-187.
doi: 10.1016/j.foodchem.2018.03.124 pmid: 29680042
[9] Bouis H E, Saltzman A. Improving nutrition through biofortification: a review of evidence from harvestplus, 2003 through 2016. Glob Food Secur, 2017,12:49-58.
[10] Cheema S A, Rehman H U, Kiran A, Bashir K, Wakeel A. Progress and prospects for micronutrient biofortification in rice/wheat. In: Hossain M A, Kamiya T, Burritt D J, Tran L S P, Fujiwara T, eds. Plant Micronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants. NY, US: Academic Press, 2018. pp 261-278.
[11] Saini D K, Devi P, Kaushik P. Advances in genomic interventions for wheat biofortification: a review. Agronomy-Basel, 2020,10(1):62.
[12] Hoekenga O. Genomics of mineral nutrient biofortification: calcium, iron and zinc. In: Tuberosa R, Graner A, Frison E, eds. Genomics of Plant Genetic Resources. Springer Science + Business Media Dordrecht, 2014. pp 431-454.
[13] 张勇, 郝元峰, 张艳, 何心尧, 夏先春, 何中虎. 小麦营养和健康品质研究进展. 中国农业科学, 2016,49:4284-4298.
Zhang Y, Hao Y F, Zhang Y, He X Y, Xia X C, He Z H. Progress in research on genetic improvement of nutrition and health qualities in wheat. Sci Agric Sin, 2016,49:4284-4298 (in Chinese with English abstract).
[14] 何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018,8(1):99-106.
He Z H, Zhuang Q S, Cheng S H, Yu Z W, Zhao Z D, Liu X. Wheat production and technology improvement in China. J Agric, 2018,8(1):99-106 (in Chinese with English abstract).
[15] 王秀敏, 谢令琴, 刘艳苏, 胡珍荣. 原子吸收光谱法测定小麦品种子粒中钾钠钙镁的含量. 河北农业大学学报, 2003,26(4):90-97.
Wang X M, Xie L Q, Liu Y S, Hu Z R. Determination of the kalium, sodium, calcium and magnesium content in wheat seeds by atomic absorption spectroscopy. J Agric Univ Hebei, 2003,26(4):90-97 (in Chinese with English abstract).
[16] 张明艳, 郁一凡, 封超年, 郭文善, 朱新开, 李春燕, 彭永欣. 不同基因型小麦籽粒、面粉和麸皮中Ca和Zn含量的差异. 麦类作物学报, 2011,31:240-245.
Zhang M Y, Yu Y F, Feng C N, Guo W S, Zhu X K, Li C Y, Peng Y X. Differences of Calcium and Zinc contents among four, grain and bran of different wheat varieties. J Triticeae Crops, 2011,31:240-245 (in Chinese with English abstract).
[17] 刘三才, 李为喜, 张晓芳, 朱志华. 小麦强化营养粉中钙、锌含量的盐酸浸提快速测定. 麦类作物学报, 2007,27(1):63-66.
Liu S C, Li W X, Zhang X F, Zhu Z H. Rapid determination of Calcium and Zinc in nutrient enrichment flour of wheat with hydrochloric acid extraction. J Triticeae Crops, 2007,27(1):63-66 (in Chinese with English abstract).
[18] 高雅洁, 王朝辉, 王森, 靳静静, 曹寒, 戴健, 于荣. 石灰性土壤施用氯化钙对冬小麦生长及钙锌吸收的影响. 植物营养与肥料学报, 2015,21:719-726.
Gao Y J, Wang C H, Wang S, Jin J J, Cao H, Dai J, Yu R. Effects of calcium chloride on winter wheat yield and uptake of Ca and Zn in calcareous soil. J Plant Nutri Fert, 2015,21:719-726 (in Chinese with English abstract).
[19] 石荣丽, 邹春琴, 芮玉奎, 张学勇, 夏晓平, 张福锁. ICP-AES 测定中国小麦微核心种质库籽粒矿质养分含量. 光谱学与光谱分析, 2009,29:1104-1107.
Shi R L, Zou C Q, Rui Y K, Zhang X Y, Xia X P, Zhang F S. Application of ICP-AES to detecting nutrients in grain of wheat core collection of China. Spectros Spec Anal, 2009,29:1104-1107 (in Chinese with English abstract).
[20] 季英苗. 不同小麦品种(系)中主要矿质元素的含量比较及与品质的关系. 中国科学院成都生物研究所硕士学位论文, 四川成都, 2009.
Ji Y M. Study on the Determination and Correlation Analysis with Wheat Quality of the Contents of the Main Mineral Elements in Different Species of Wheat. MS Thesis of Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China, 2009 (in Chinese with English abstract).
[21] Bhatta M, Baenziger P S, Waters B M, Poudel R, Belamkar V, Poland J, Morgounov A. Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat. Int J Mol Sci, 2018,19:3237.
[22] 李刚, 郑若锋. X射线荧光光谱法测定植物样品中12种元素含量. 理化检验: 化学分册, 2012,48:1433-1437.
Li G, Zheng N F. XRFS determination of 12 elements in plant samples. Physic Test Chem Anal (Part B: Chem Anal)), 2012,48:1433-1437 (in Chinese with English abstract).
[23] 李春燕, 封超年, 王亚雷, 张容, 郭文善, 朱新开, 彭永欣. 小麦籽粒不同部位的矿质元素组成与其含量差异. 植物生理学报, 2007,43:1077-1081.
Li C Y, Feng C N, Wang Y L, Zhang R, Guo W S, Zhu X K, Peng Y X. Differences of mineral elements compositions and their contents among different positions of wheat grains. Plant Physio J, 2007,43:1077-1081 (in Chinese with English abstract).
[24] 王广西, 胡燕, 罗琼, 李丹, 陈诚, 赖万昌, 翟娟. 波长色散X射线荧光光谱法分析小麦籽粒中矿质元素. 分析试验室, 2017,36:663-666.
Wang G X, Hu Y, Luo Q, Li D, Chen C, Lai W C, Zhai J. Analysis of mineral elements in wheat grains by wavelength dispersive X-ray fluorescence spectrometry. Chin J Anal Lab, 2017,36:663-666 (in Chinese with English abstract).
[25] 田旷达, 邱凯贤, 李祖红, 吕亚琼, 张秋菊, 熊艳梅, 闵顺耕. 近红外光谱法结合最小二乘支持向量机测定烟叶中钙、镁元素. 光谱学与光谱分析, 2014,34:3262-3266.
Tian G D, Qiu K X, Li Z H, Lyu Y Q, Zhang Q J, Xiong Y M, Min S G. Determination of calcium and magnesium in tobacco by near-infrared spectroscopy and least squares-support vector machine. Spectros Spec Anal, 2014,34:3262-3266.
[26] 蒋淑丽. 稻米矿质元素分析及其近红外测定技术的研究. 浙江大学博士学位论文, 浙江杭州, 2007. pp 68-81.
Jiang S L. The Study of Determination and the Calibration Model Optimization by Near Infrared Reflectance Spectroscopy (NIRS) for Mineral Element Contents in Rice (Oryza stativa L.). PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2007. pp 68-81 (in Chinese with English abstract).
[27] 王秀敏, 许民安, 常淑惠, 谷俊涛, 谢令琴. 冬小麦品种子粒钙含量的遗传研究. 河北农业大学学报, 2002,25(4):25-28.
Wang X M, Xu M A, Chang S H, Gu J T, Xie L Q. Heredity study on grain calcium content of winter wheat varieties. J Agric Univ Hebei, 2002,25(4):25-28 (in Chinese with English abstract).
[28] Zhang Y, Song Q, Yan J, Tang J, Zhao R, Zhang Y, He Z, Zou C, Ortiz-Monasterio I. Mineral element concentrations in grains of Chinese wheat cultivars. Euphytica, 2010,174:303-313.
[29] Guttieri M J, Baenziger P S, Frels K, Carver B, Arnall B, Waters B M. Variation for Grain mineral concentration in a diversity panel of current and historical great plains hard winter wheat germplasm. Crop Sci, 2015,55:1035-1052.
[30] Alomari D Z, Eggert K, von Wiren N, Pillen K, Roder M S. Genome-wide association study of calcium accumulation in grains of European wheat cultivars. Front Plant Sci, 2017,8:1797.
doi: 10.3389/fpls.2017.01797 pmid: 29163559
[31] 傅兆麟, 王海燕, 郭孙黎, 宋创业, 张铮. 黄淮麦区主要小麦种质资源钙含量测定. 淮北煤炭师范学院学报(自然科学版), 2008,29(1):41-44.
Fu Z L, Wang H Y, Guo S L, Song C Y, Zhang Z. The determing report of Ca content in seed for the main wheat idioplasm resources in Huanghai wheat area. J Huaibei Coal Indus Tech Coll (Nat Sci), 2008,29(1):41-44 (in Chinese with English abstract).
[32] 夏瑞雪, 魏帅, 郭波莉, 曹东梅. 豫北地区小麦籽粒矿质元素含量分析. 核农学报, 2017,31:516-523.
Xia R X, Wei S, Guo B L, Cao D M. Analysis of mineral element content of wheat in northern area of Henan province. J Nucl Agric Sci, 2017,31:516-523 (in Chinese with English abstract).
[33] 孙宪印, 田枫, 米勇, 牟秋焕, 王瑞霞, 王超, 亓晓蕾, 钱兆国, 吴科, 李斯深. 小麦重组自交系群体籽粒主要矿质元素含量的分析. 麦类作物学报, 2016,36:872-877.
Sun X Y, Tian F, Mi Y, Mou Q H, Wang R X, Wang C, Qi X L, Qian Z G, Wu K, Li S S. Analysis of major mineral elements concentration in grain of wheat recombinant inbred lines. J Triticeae Crops, 2016,36:872-877 (in Chinese with English abstract).
[34] 王健胜, 吴政卿, 周正富, 马爱锄, 刘军, 晁岳恩, 李文旭, 王亚欢, 李静婷, 赵干卿, 雷振生. 国内外小麦种质主要矿质元素含量的评价分析. 分子植物育种, 2018,16:7550-7557.
Wang J S, Wu Z Q, Zhou Z F, Ma A C, Liu J, Chao Y E, Li W X, Wang Y O, Li J T, Zhao G Q, Lei Z S. Evaluation and analysis of major mineral elements content in domestic and foreign wheat germplasm. Mol Plant Breed, 2018,16:7550-7557 (in Chinese with English abstract).
[35] Rehman A, Farooq M, Nawaz A, Al-Sadi A M, Al-Hashmi K S, Nadeem F, Ullah A. Characterizing bread wheat genotypes of Pakistani origin for grain zinc biofortification potential. J Sci Food Agric, 2018,98:4842-4836.
[36] Akcura M, Kokten K. Variations in grain mineral concentrations of Turkish wheat landraces germplasm. Qual Assur Saf Crop, 2017,9(2):1-8.
[37] Hocaolu O, Akcura M, Kaplan M. Changes in the grain element contents of durum wheat varieties of Turkey registered between 1967-2010. Commun Soil Sci Plan, 2020,51:431-439.
[38] Balint A F, Kovacs G, Erdei L, Sutka J. Comparison of the Cu, Zn, Fe, Ca and Mg contents of the grains of wild, ancient and cultivated wheat species. Cereal Res Commun, 2001,29:375-382.
[39] Calderini D F, Ortiz-Monasterio I. Are synthetic hexaploids a means of increasing grain element concentrations in wheat? Euphytica, 2003,134:169-178.
[40] Pongrac P, Arcon I, Castillo-Michel H, Vogel-Mikus K. Mineral element composition in grain of awned and awnletted wheat (Triticum aestivum L.) cultivars: tissue-specific iron speciation and phytate and non-phytate ligand ratio. Plants-Basel, 2020,9(1):79.
[41] 胡秋辉, 陈历程, 吴莉莉, 曹延松, 程万和. 黑小麦营养成分分析及其深加工制品前景展望. 食品科学, 2001,22(12):50-52.
Hu Q H, Chen L C, Wu L L, Cao Y S, Cheng W H. Nutritional components analysis of the rye and its prospects for further processed products. Food Sci, 2001,22(12):50-52 (in Chinese with English abstract).
[42] Nath M, Roy P, Shukla A, Kumar A. Spatial distribution and accumulation of calcium in different tissues, developing spikes and seeds of finger millet genotype. J Plant Nutr, 2013,36:539-550.
[43] Chauhan N, Sankhyan N K, Sharma R P, Singh J, Gourav . Effect of long-term application of inorganic fertilizers, farm yard manure and lime on wheat (Triticum aestivum L.) productivity, quality and nutrient content in an acid alfisol. J Plant Nutr, 2020,43:2569-2578.
[44] Galindo F S, Teixeira M C M, Buzetti S, Santini J M K, Boleta E H M, Rodrigues W L. Macronutrient accumulation in wheat crop (Triticum aestivum L.) with Azospirillum brasilense associated with nitrogen doses and sources. J Plant Nutr, 2020,43:1057-1069.
[45] Dincsoy M, Sonmez F. The effect of potassium and humic acid applications on yield and nutrient contents of wheat (Triticum aestivum L. var. Delfii) with same soil properties. J Plant Nutr, 2019,42:2757-2772.
[46] Popko M, Michalak I, Wilk R, Gramza M, Chojnacka K, Gorecki H. Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat. Molecules, 2018,23:470.
[47] 李可懿, 王朝辉, 赵护兵, 赵娜, 高亚军, Lyons G. 黄土高原旱地小麦与豆科绿肥轮作及施氮对小麦产量和籽粒养分的影响. 干旱地区农业研究, 2011,29(2):110-116.
Li K Y, Wang Z H, Zhao H B, Zhao N, Gao Y J, Lyons G. Effect of rotation with legumes and N fertilization on yield and grain nutrient contents of wheat in dryland of the Loess Plateau. Agric Res Arid Areas, 2011,29(2):110-116 (in Chinese with English abstract).
[48] Klikocka H, Marks M, Barczak B, Szostak B, Podlesna A, Podlesny J. Response of spring wheat to NPK and S fertilization. The content and uptake of macronutrients and the value of ionic ratios. Open Chem, 2018,16:1059-1065.
[49] Pszczolkowska A, Okorski A, Olszewski J, Fordonski G, Krzebietke S, Charenska A. Effects of pre-preceding leguminous crops on yield and chemical composition of winter wheat grain. Plant Soil Environ, 2018,64:592-596.
[50] Wanic M, Denert M, Trede K. Effect of forecrops on the yield and quality of common wheat and spelt wheat grain. J Elementol, 2019,24:369-383.
[51] Hamner K, Weih M, Eriksson J, Kirchmann H. Influence of nitrogen supply on macro- and micronutrient accumulation during growth of winter wheat. Field Crops Res, 2017,213:118-129.
[52] 孙发宇, 李长成, 王安, 李韬. 叶面喷施硒酸钠对不同小麦品种(系)籽粒硒及其他矿质元素含量的影响. 麦类作物学报, 2017,37:559-564.
Sun F Y, Li C C, Wang A, Li T. Effect of sodium selenate application on concentrations of selenium and other minerals in grains of different wheat genotypes. J Triticeae Crops, 2017,37:559-564 (in Chinese with English abstract).
[53] Pongrac P, Kreft I, Vogel-Mikus K, Regvar M, Germ M, Vavpetic P, Grlj N, Jeromel L, Eichert D, Budic B, Pelicon P. Relevance for food sciences of quantitative spatially resolved element profile investigations in wheat (Triticum aestivum L.) grain. J R Soc Interface, 2013,10:20130296.
pmid: 23676898
[54] Zhang P P, Ma G, Wang C, Zhu Y J, Guo T C. Mineral elements bioavailability in milling fractions of wheat grain response to zinc and nitrogen application. Agron J, 2019,111:2504-2511.
[55] 索全义, 王俊超, 索凤兰. 小麦开花后不同光合器官对籽粒品质的影响. 麦类作物学报, 2009,29:275-278.
Suo Q Y, Wang J C, Suo F L. Effect of different photosynthesis organs on the quality of wheat grains after anthesis. J Triticeae Crops, 2009,29:275-278 (in Chinese with English abstract).
[56] 何红霞. 栽培模式对旱地小麦籽粒产量和养分吸收利用的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2018.
He H X. Wheat Grain Yield and Its Nutrient Update and Utilization Affected by Cultivation Patterns in Dryland. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2018 (in Chinese with English abstract).
[57] Dolijanovic Z, Nikolic S R, Kovacevic D, Djurdjic S, Miodragovic R, Todorovic M J, Djordjevic J P. Mineral profile of the winter wheat grain: effects of soil tillage systems and nitrogen fertilization. Appl Ecol Env Res, 2019,17:11757-11771.
[58] Ryan M H, Derrick J W, Dann P R. Grain mineral concentrations and yield of wheat grown under organic and conventional management. J Sci Food Agric, 2004,84:207-216.
[59] Chandra A K, Kumar A, Bharati A, Joshi R, Agrawal A, Kumar S. Microbial-assisted and genomic-assisted breeding: a two way approach for the improvement of nutritional quality traits in agricultural crops. 3 Biotech, 2020,10(2):2.
[60] Vreugdenhil D, Aarts M G M, Koornneef M, Nelissen H, Ernst W H O. Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana. Plant Cell Environ, 2004,27:828-839.
[61] Singh U M, Metwal M, Singh M, Taj G, Kumar A. Identification and characterization of calcium transporter gene family in finger millet in relation to grain calcium content. Gene, 2015,566:37-46.
pmid: 25869323
[62] 张勇, 王德森, 张艳, 何中虎. 北方冬麦区小麦品种籽粒主要矿物质元素含量分布及其相关性分析. 中国农业科学, 2007,40:1871-1876.
Zhang Y, Wang D S, Sun Y, He Z H. Variation of major mineral elements concentration and their relationships in grain of Chinese wheat. Sci Agric Sin, 2007,40:1871-1876 (in Chinese with English abstract).
[63] Shen X, Yuan Y P, Zhang H, Guo Y, Zhao Y, Li S S, Kong F M. The hot QTL locations for potassium, calcium, and magnesium nutrition and agronomic traits at seedling and maturity stages of wheat under different potassium treatments. Genes, 2019,10:607.
[64] Ilarslan H, Palmer R G, Horner H T. Calcium oxalate crystals in developing seeds of soybean. Ann Bot, 2001,88:243-257.
doi: 10.1006/anbo.2001.1453
[65] Rao C K, Annadana S. Nutrient biofortification of staple food crops: technologies, products and prospects. In: Benkeblia N eds. Phytonutritional Improvement of Crops. UK: John Wiley & Sons Ltd, 2017. pp 113-118.
[66] Oh B C, Choi W C, Park S, Kim Y O, Oh T K. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl Microbiol Biotechnol, 2004,63:362-372.
doi: 10.1007/s00253-003-1345-0 pmid: 14586576
[67] Narwal R P, Malik R S, Yadak H K. Micronutrients in soils and plants and their impact on animal and human health. In Singh B R, McLaughlin M J, Brevik E C, eds. Nexus of Soils, Plants and Human Health. Germany: Catena Soil Sciences, 2017. pp 64-71.
[68] 王晓曦, 贾爱霞, 于中利. 不同出粉率小麦粉的品质特性及营养组分研究. 中国粮油学报, 2012,27(1):6-9.
Wang X X, Jia A X, Yu Z L. Study on wheat meal quality characteristic and nutritive composition of different flour yield. J Chin Cereals Oils Assoc, 2012,27(1):6-9 (in Chinese with English abstract).
[69] 高森森, 关二旗, 李萌萌, 卞科. 不同出粉率小麦粉矿物质含量及其加工品质研究. 食品工业, 2018,39(4):217-220.
Gao S S, Guan E Q, Li M M, Bian K. Study on mineral content and processing quality of wheat flour with different flour yields. Food Ind, 2018,39(4):217-220 (in Chinese with English abstract).
[70] 姬飞腾, 李楠, 邓馨. 喀斯特地区植物钙含量特征与高钙适应方式分析. 植物生态学报, 2009,33:926-935.
doi: 10.3773/j.issn.1005-264x.2009.05.012
Ji F T, Li N, Deng X. Calcium contents and high calcium adaptation of plants in karst areas of China. Chin J Plant Ecol, 2009,33:926-935 (in Chinese with English abstract).
[71] Grusak M A, DellaPenna D. Improving the nutrient composition of plants to enhance human nutrition and health. Annu Rev Plant Phys, 1999,50:133-161.
[72] 李鹏, 张兆沛, 郁飞燕, 高晓凯, 张联合. 小麦灌浆期籽粒累积钙的生理特性研究. 山东农业科学, 2017,49(8):30-32.
Li P, Zhang Z P, Yu F Y, Gao X K, Zhang L H. Study on physiological characteristics of calcium accumulation in wheat grains at filling stage. Shandong Agric Sci, 2017,49(8):30-32 (in Chinese with English abstract).
[73] Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, Korol A B, Fahima T, Saranga Y. Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor Appl Genet, 2009,119:353-369.
doi: 10.1007/s00122-009-1044-z pmid: 19407982
[74] Shi R L, Tong Y P, Jing R L, Zhang F S, Zou C Q. Characterization of quantitative trait loci for grain minerals in hexaploid wheat (Triticum aestivum L.). J Integr Agric, 2013,12:1512-1521.
doi: 10.1016/S2095-3119(13)60559-6
[75] Morris J, Hawthorne K M, Hotze T, Abrams S A, Hirschi K D. Nutritional impact of elevated calcium transport activity in carrots. Proc Natl Acad Sci USA, 2008,105:1431-1435.
pmid: 18202180
[76] Li A L, Zhu Y F, Tan X M, Wang X, Wei B, Guo H Z, Zhang Z L, Chen X B, Zhao G Y, Kong X Y, Jia J Z, Mao L. Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). Plant Mol Biol, 2008,66, 429-443.
doi: 10.1007/s11103-007-9281-5 pmid: 18185910
[77] Nirgude M, Babu B K, Shambhavi Y, Singh U M, Upadhyaya H D, Kumar A. Development and molecular characterization of genic molecular markers for grain protein and calcium content in finger millet (Eleusine coracana (L.) Gaertn.). Mol Biol Rep, 2014,41:1189-1200.
doi: 10.1007/s11033-013-2825-7 pmid: 24477581
[78] Wattoo J I, Liaqat S, Mubeen H, Ashfaq M, Shahid M N, Farooq A, Sajjad M, Arif M. Genetic mapping of grain nutritional profile in rice using basmati derived segregating population revealed by SSRs. Int J Agric Biol, 2019,21:929-935.
[79] Punshon T, Hirschi K, Yang J, Lanzirotti A, Lai B, Guerinot M L. The role of CAX1 and CAX3 in elemental distribution and abundance in Arabidopsis seed. Plant Physiol, 2012,158:352-362.
doi: 10.1104/pp.111.184812 pmid: 22086421
[80] Kokane S B, Pathak R K, Singh M, Kumar A. The role of tripartite interaction of calcium sensors and transporters in the accumulation of calcium in finger millet grain. Biol Plant, 2018,62:325-334.
[81] Tabbita F, Pearce S, Barneix A J. Breeding for increased grain protein and micronutrient content in wheat: ten years of the GPC-B1 gene. J Cereal Sci, 2017,73:183-191.
[82] Ma Y, Rajkumar M, Zhang C, Freitas F. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manage, 2016,174:14-25.
pmid: 26989941
[83] Pataco I M, Lidon F C, Ramos I, Oliveira K, Guerra M, Pessoa M F, Carvalho M L, Ramalho J C, Leitao A E, Santos J P, Campos P S, Silva M M, Pais I P, Reboredo F H. Biofortification of durum wheat (Triticum turgidum L. ssp. durum (Desf.) Husnot) grains with nutrients. J Plant Interact, 2017,12(1):39-50.
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[6] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[7] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[8] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[9] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[10] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[11] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[12] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[13] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[14] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[15] LUO Jiang-Tao, ZHENG Jian-Min, PU Zong-Jun, FAN Chao-Lan, LIU Deng-Cai, HAO Ming. Chromosome transmission in hybrids between tetraploid and hexaploid wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1427-1436.
Full text



No Suggested Reading articles found!