Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 1948-1956.doi: 10.3724/SP.J.1006.2022.12049

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Fine mapping and cloning of a seed shattering gene SH8 in rice (Oryza sativa L.)

WANG Mu-Mu1(), HE Yan-Fan2, ZHENG Yong-Sheng1, WANG Hui1, WANG Li-Yuan1, WANG Dong-Jian1, ZHANG Han1, LI Ru-Yu1,*()   

  1. 1Crop research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
    2Shandong Seed Administration Station, Jinan 250100, Shandong, China
  • Received:2021-07-22 Accepted:2021-11-29 Online:2022-08-12 Published:2021-12-21
  • Contact: LI Ru-Yu E-mail:opmcy@163.com;li_ruyu@sina.com
  • Supported by:
    National Natural Science Foundation of China(31801340)

Abstract:

Seed shattering is an important trait for seed dispersal and reproduction of offspring in wild rice. It is a vital guarantee for seed dispersal and offspring reproduction of wild rice, but easy grain dropping will cause yield loss in domesticated rice production. Although some genes related to seed shattering have been cloned in rice, these genes were not responsible for all phenotype variation of rice seed shattering. In this study, a recombinant inbred line (E6-5) was selected from a cross between an indica variety Pei-kuh and an Asian common wild rice W1944 and hybridized with Pei-kuh to construct the isolated population. E6-5 harbored W1944 introgression segment on chromosome 8, but it had not carried SH4 gene and exhibited a very easy seed shattering phenotype. By analyzing an F2 segregation population constructed using E6-5 and Pei-kuh, we narrowed down the SHATTERING8 (SH8, qSHT-8) in the 26.4 kb interval. There were four protein-coding genes in this region. The comparison of PEI-Kuh and E6-5 sequencing revealed that LOC_Os08g41950 contained three single nucleotide polymorphisms (SNPs) in coding region. Meanwhile, qRT-PCR revealed that LOC_Os08g41950 was expressed in the junction of flower and pedicel, where the abscission layer was formed and shed off. We considered LOC_Os08g41950 as the candidate gene for SH8. To verify whether LOC_Os08g41950 was responsible for rice seed shattering, we constructed an overexpression vector using LOC_Os08g41950 encoding sequence from E6-5 and transformed it into Pei-huh. Compared with Pei-kuh, the shattering ability of transgenic plants was significantly enhanced. In addition, consistent with the BTS testing results, transgenic plants had smoother fracture surface of pedicel compared with that of Pei-kuh in scanning electron microscopy photos. These results would facilitate the study of rice domestication and seed shattering regulation mechanism.

Key words: O. rufipogon, seed shattering, abscission layer, gene cloning, SH8 gene

Table S1

Primers used in this study (restriction sites are indicated in lowercase letters)"

引物名称
Name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
用途
Application
FNP-SH4 ACTACCGCAAGGGGAACTG TGGGGAGGTTGCAGTCCTT 功能位点检测FNP detection
RM23469 CAACAGAAGCCATTAGGCATTAGC ACCGAAGTGATCAACAACCTACC 基因定位Gene mapping
RM23489 AGCAGGAGGAGGAGAAGGGAAGG CGAGCCACTGCTTCTTCTGTGC 基因定位Gene mapping
RM447 ACGGGCTTCTTCTCCTTCTCTCC TCCCTTGTGCTGTCTCCTCTCC 基因定位Gene mapping
RM23532 TATTGCCATGAATGCTGGGAAGG GGCATCGCAATGACAAACATCC 基因定位Gene mapping
RM23586 TTCTGTGGATAGCTGGAACATGC CCAGATACATCATCAGGAAGGAAGG 基因定位Gene mapping
M1(CAPS)a TGAATTGACAAAACGGACCA GGACCTGTTCTTGGGTTGAA 基因定位Gene mapping
M2(IN/DEL) AACATGATGGTGCCAAGTGA AGGATGGAGATGGTGAGTGG 基因定位Gene mapping
ACTIN TACAGTGTCTGGATTGGAGGAT TCTTGGCTTAGCATTCTTGGGT 实时定量PCR RT-qPCR
qPCR-950 ATTCATCCCTGAAGCACGTC GGCTGACGTTCATAGCCAAT 实时定量PCR RT-qPCR
qPCR-960 CTTCCACCTCCAGCATTGAT ATCGCTTCCTCCAAACCTCT 实时定量PCR RT-qPCR
950QC-1 AACATGATGGTGCCAAGTGA ACAGGACAGATCCAATCGAA 测序 Sequencing
950QC-2 GCTGAAGAGGATCGAGAACA CAGCGCTATGACATCGAAAA 测序 Sequencing
950QC-3 CTGAAGGCAAGGGTTGAAAA GTTGCTTTCCTCCAGCTACA 测序 Sequencing
950QC-4 TGCAGATATCATGGAATGGA TGCGACAGTGAATCTGTCAT 测序 Sequencing
960QC-1 TATCCGCGTACGGCTTAATG AATGTGGTGGTGAGGGAATC 测序 Sequencing
960QC-2 TCCGAGTGCTCCTAGTGGAT AGAAAGGTGGGAAGGGAAAA 测序 Sequencing
960QC-3 GAGGCGAAACACCAAATCTC TACCCCTAGCCTCTGCTTGA 测序 Sequencing
引物名称
Name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
用途
Application
960QC-4 TATCTCCACCATCCCCACTC GGCGTGCCAGTTAGTTTGAT 测序 Sequencing
960QC-5 GTTCGGTCCGATCTATCAAGA CTCACACAACCACCATCCTG 测序 Sequencing
960QC-6 ATGGCGACAACCTACTGACC GAACCAGGCAAAGGGTTTCT 测序 Sequencing
pSH8-0E AAAggatcc- ATGGGGAGGGGTCGGGTGGA AAAactagt- TCATGGTAGCCATGGGGGCAT 载体构建Vector construction
HYG AAGTTCGACAGCGTCTCCGAC TCTACACAGCCATCGGTCCAG 转基因检测Transgenic detection
CDS-1 ATGGGGAGGGGTCGGGTGGA CGGCTAGCTTTCAATTGCTC 转基因检测Transgenic detection

Fig. 1

Phenotypic characterization of E6-5 and Pei-kuh A: breaking tensile strength (BTS) required to pull grain away from pedicels; B and C: fluorescence images of longitudinal sections of abscission layer, AL means abscission layer; D and F: scanning electron microscopy photos of pedicel junction after detachment of seeds. Bar = 50 μm in B-E. ** indicates significant difference at P < 0.01 by Student's t-test."

Fig. 2

Map-based cloning of SH8 gene N is the number of mapping populations."

Table 1

Gene annotation of Nipponbare in mapping region"

基因名称
Locus name
基因注释
Gene annotation
LOC_Os08g41950 OsMADS7-MADS-box family gene with MIKCc type-box, expressed
LOC_Os08g41960 OsMADS37-MADS-box family gene with MIKCc* type-box, expressed
LOC_Os08g41970 Conserved hypothetical protein
LOC_Os08g41980 Aminotransferase, putative, expressed

Fig. 3

Analysis of candidate MADS-box genes A: expression pattern of candidate MADS-box genes at heading stage in E6-5; B: relative expression of Os08g41950 in FP and F at heading stage; C: coding sequence alignment of Os08g41950 between E6-5 and Pei-kuh, SNPs are highlighted in red blocks, bases causing amino acid change are underlined. FP: the junction of flower and pedicel; F: flower."

Fig. 4

Detection of transgenic plants A: detection of transgenic plants by primer HYG; B: detection of transgenic plants by SH8 gene specific primer CDS-1. "

Fig. 5

Phenotypic characterization of transgenic plants A: relative expression of SH8 in abscission layer at heading stage; B: breaking tensile strength (BTS) required to pull grain away from pedicels; C and D: scanning electron microscopy photos of pedicel junction after detachment of seeds. Bar = 50 μm in C and D. ** indicates significant difference at P < 0.01 by Student's t-test."

[1] Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication. Cell, 2006, 127: 1309-1321.
pmid: 17190597
[2] Fuller D Q, Qin L, Zheng Y, Zhao Z, Chen X, Hosoya L A, Sun G P. The domestication process and domestication rate in rice: spikelet bases from the Lower Yangtze. Science, 2009, 323: 1607-1610.
doi: 10.1126/science.1166605
[3] Taylor J E, Whitelaw C A. Signals in abscission. New Phytol, 2001, 151: 323-340.
doi: 10.1046/j.0028-646x.2001.00194.x
[4] Taghizadeh M S, Simon C, Nicolas M E, Cousens R D. Water deficit changes the anatomy of the fruit abscission zone in Raphanus raphanistrum (Brassicaceae). Aust J Bot, 2009, 57: 708-714.
doi: 10.1071/BT09165
[5] Zhou Y, Lu D, Li C, Luo J, Zhu B F, Zhu J, Shang-Guan Y, Wang Z, Sang T, Zhou B, Han B. Genetic control of seed shattering in rice by the APETALA2 transcription factor shattering abortion1. Plant Cell, 2012, 24: 1034-1048.
doi: 10.1105/tpc.111.094383
[6] Xiong Z L, Liu D K, Dai K X, Xu G C, Zhang Q. Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theor Appl Genet, 1999, 98: 243-251.
doi: 10.1007/s001220051064
[7] Cai H W, Morishima H. Genomic regions affecting seed shattering and seed dormancy in rice. Theor Appl Genet, 2000, 100: 840-846.
doi: 10.1007/s001220051360
[8] Thomson M J, Tai T H, McClung A M, Lai X H, Hinga M E, Lobos K B, Xu Y, Martinez C P, McCouch S R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet, 2003, 107: 479-493.
pmid: 12736777
[9] Gu X Y, Kianian S F, Hareland G A, Hoffer B L, Foley M E. Genetic analysis of adaptive syndromes interrelated with seed dormancy in weedy rice (Oryza sativa). Theor Appl Genet, 2005, 110: 1108-1118.
doi: 10.1007/s00122-005-1939-2
[10] Li C, Zhou A, Sang T. Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol, 2006, 170: 185-193.
[11] Konishi S, Izawa T, Lin S Y, Ebana K, Fukuta Y, Sasaki T, Yano M. An SNP caused loss of seed shattering during rice domestication. Science, 2006, 312: 1392-1396.
pmid: 16614172
[12] Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science, 2006, 311: 1936-1939.
doi: 10.1126/science.1123604
[13] Lin Z, Griffith M E, Li X, Zhu Z, Tan L, Fu Y, Zhang W, Wang X, Xie D, Sun C. Origin of seed shattering in rice (Oryza sativa L.). Planta, 2007, 226: 11-20.
doi: 10.1007/s00425-006-0460-4
[14] Yoon J, Cho L H, Kim S L, Choi H, Koh H J, An G. The BEL1-type homeobox gene SH5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis. Plant J, 2014, 79: 717-728.
doi: 10.1111/tpj.12581
[15] Ji H, Kim S R, Kim Y H, Kim H, Eun M Y, Jin I D, Cha Y S, Yun D W, Ahn B O, Lee M C, Lee G S, Yoon U H, Lee J S, Lee Y H, Suh S C, Jiang W, Yang J I, Jin P, McCouch S R, An G, Koh H J. Inactivation of the CTD phosphatase-like gene OsCPL1 enhances the development of the abscission layer and seed shattering in rice. Plant J, 2010, 61: 96-106.
doi: 10.1111/j.1365-313X.2009.04039.x
[16] Yoon J, Cho L H, Antt H W, Koh H J, An G. KNOX protein OSH15 induces grain shattering by repressing lignin biosynthesis genes. Plant Physiol, 2017, 174: 312-325.
doi: 10.1104/pp.17.00298
[17] Wu W, Liu X, Wang M, Meyer R S, Luo X, Ndjiondjop M N, Tan L, Zhang J, Wu J, Cai H, Sun C, Wang X, Wing R A, Zhu Z. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat Plants, 2017, 3: 17064.
doi: 10.1038/nplants.2017.64
[18] Lyu S, Wu W, Wang M, Meyer R S, Ndjiondjop M N, Tan L, Zhou H, Zhang J, Fu Y, Cai H, Sun C, Wing R A, Zhu Z. Genetic control of seed shattering during African rice domestication. Nat Plants, 2018, 4: 331-337.
doi: 10.1038/s41477-018-0164-3
[19] Jiang L, Ma X, Zhao S, Tang Y, Liu F, Gu P, Fu Y, Zhu Z, Cai H, Sun C, Tan L. The APETALA2-Like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size. Plant Cell, 2019, 31: 17-36.
doi: 10.1105/tpc.18.00304
[20] Ji H S, Chu S H, Jiang W, Cho Y I, Hahn J H, Eun M Y, McCouch S R, Koh H J. Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes. Genetics, 2006, 173: 995-1005.
doi: 10.1534/genetics.105.054031
[21] Liljegren S J, Ditta G S, Eshed Y, Savidge B, Bowman J L, Yanofsky M F. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 2000, 404: 766-770.
doi: 10.1038/35008089
[22] Fernandez D E, Heck G R, Perry S E, Patterson S E, Bleecker A B, Fang S C. The embryo MADS domain factor AGL15 acts postembryonically. Inhibition of perianth senescence and abscission via constitutive expression. Plant Cell, 2000, 12: 183-198.
pmid: 10662856
[23] Mao L, Begum D, Chuang H W, Budiman M A, Szymkowiak E J, Irish E E, Wing R A. JOINTLESS is a MADS-box gene controlling tomato flower abscissionzone development. Nature, 2000, 406: 910-913.
doi: 10.1038/35022611
[24] Nakano T, Kimbara J, Fujisawa M, Kitagawa M, Ihashi N, Maeda H, Kasumi T, Ito Y. MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development. Plant Physiol, 2012, 158: 439-450.
[25] Liu D, Wang D, Qin Z, Zhang D, Yin L, Wu L, Colasanti J, Li A, Mao L. The SEPALLATA MADS-box protein SLMBP21 forms protein complexes with JOINTLESS and MACROCALYX as a transcription activator for development of the tomato flower abscission zone. Plant J, 2014, 77: 284-296.
doi: 10.1111/tpj.12387
[26] Onishi K, Takagi K, Kontani M, Tanaka T, Sano Y. Different patterns of genealogical relationships found in the two major QTLs causing reduction of seed shattering during rice domestication. Genome, 2007, 50: 757-766.
doi: 10.1139/G07-051
[27] Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky M F, Kater M M, Colombo L. MADS-Box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell, 2003, 15: 2603-2611.
doi: 10.1105/tpc.015123
[28] Kater M M, Dreni L, Colombo L. Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot, 2006, 57: 3433-3444.
doi: 10.1093/jxb/erl097
[1] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[2] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[3] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[4] TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683.
[5] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
[6] YANG Qin-Li, YANG Duo-Feng, DING Lin-Yun, ZHANG Ting, ZHANG Jun, MEI Huan, HUANG Chu-Jun, GAO Yang, YE Li, GAO Meng-Tao, YAN Sun-Yi, ZHANG Tian-Zhen, HU Yan. Identification of a cotton flower organ mutant 182-9 and cloning of candidate genes [J]. Acta Agronomica Sinica, 2021, 47(10): 1854-1862.
[7] HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952.
[8] Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861.
[9] XUE Xiao-Meng,LI Jian-Guo,BAI Dong-Mei,YAN Li-Ying,WAN Li-Yun,KANG Yan-Ping,HUAI Dong-Xin,LEI Yong,LIAO Bo-Shou. Expression profiles of FAD2 genes and their responses to cold stress in peanut [J]. Acta Agronomica Sinica, 2019, 45(10): 1586-1594.
[10] Huan TAN,Yu-Hui LIU,Li-Xia LI,Li WANG,Yuan-Ming LI,Jun-Lian ZHANG. Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1021-1031.
[11] Chen-Yu MA,Wei-Min ZHAN,Wen-Liang LI,Meng-Di ZHANG,Zhang-Ying XI. Cloning and Function Analysis of ZmNAOD Gene in Maize [J]. Acta Agronomica Sinica, 2018, 44(10): 1433-1441.
[12] Chao-Xian LIU, Jiu-Guang WANG, Xiu-Peng MEI, Ting-Ting YU, Guo-Qiang WANG, Lian ZHOU, Yi-Lin CAI. Cloning and Imprinting Characterization Analyses of Paternally Expressed Gene ZmVIL1 in Maize Endosperm [J]. Acta Agronomica Sinica, 2018, 44(03): 376-384.
[13] Yun-Fei LIANG, Lin-Cheng ZHANG, Quan-Ming PU, Zhen-Ze LEI, Song-Mei SHI, Yu-Peng JIANG, Xue-Song REN, Qi-Guo GAO. Cloning of BoLH27 Gene from Cabbage and Phenotype Analysis of Transgenic Cabbage [J]. Acta Agronomica Sinica, 2018, 44(03): 397-404.
[14] LUO Yun, MA Xuan, GU Jun-Chen, YAN Hai-Fang*. Cloning, Location and Expression of BrSIZ1 in Brassica rapa L. subsp.rapifera ‘Tsuda’ [J]. Acta Agron Sin, 2018, 44(01): 75-81.
[15] SU Ya-Chun,WANG Zhu-Qing,LI Zhu,LIU Feng,XU Li-Ping*,QUE You-Xiong,DAI Ming-Jian,Chen Yun-Hao. Molecular Cloning and Functional Identification of Peroxidase Gene ScPOD02 in Sugarcane [J]. Acta Agron Sin, 2017, 43(04): 510-521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[2] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[3] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .
[4] ZHAO Xiu-Qin;ZHU Ling-Hua;XU Jian-Long;LI Zhi-Kang. QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice[J]. Acta Agron Sin, 2007, 33(09): 1536 -1542 .
[5] GOU Ling ; HUANG Jian-Jun; ZHANG Bin; LI Tao; SUN Rui; ZHAO Ming ;. Effects of Population Density on Stalk Lodging Resistant Mechanism and Agronomic Characteristics of Maize[J]. Acta Agron Sin, 2007, 33(10): 1688 -1695 .
[6] LIU Shan-Shan;TIAN Fu-Dong;GAO Li-Hui;WANG Zhi-Kun;GE Yu-Jun;DIAO Gui-Zhu;LI Wen-Bin;. Effect of Subunit Composition of 7S Globulin on Soybean Quality Cha- racteristics[J]. Acta Agron Sin, 2008, 34(05): 909 -913 .
[7] SUN Jian-Wei. Catalase Activity Response to Sulfur Dioxide in Zea mays L.[J]. Acta Agron Sin, 2007, 33(12): 1968 -1971 .
[8] WANG Zhi-Qin;ZHANG Hao;WANG Xue-Ming;ZHANG Zi-Chang;YANG Jian-Chang. Relationship between Concentrations of Polyamines in Filling Grains and Rice Quality[J]. Acta Agron Sin, 2007, 33(12): 1922 -1927 .
[9] LI Hao ; ZHANG Ping-Ping ; ZHA Xiang-Dong ; XIA Xian-Chun ; HE Zhong-Hu ;;. Isolation of Differentially Expressed Genes from Wheat Cultivars Jinan 17 and Yumai 34 with Good Bread Quality under Heat Stress during Grain Filling Stage[J]. Acta Agron Sin, 2007, 33(10): 1644 -1653 .
[10] Yuan Youlu.Zhang Tianzhen;Guo Wangzhen;Pan Jiaju;R J Kohel. Heterosis and Gene Action of Boll Weight and Lint Percentage in High Quality Fiber Property Varieties in Upland Cotton[J]. Acta Agron Sin, 2002, 28(02): 196 -202 .