Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2018, Vol. 44 ›› Issue (01): 75-81.doi: 10.3724/SP.J.1006.2018.000075


Cloning, Location and Expression of BrSIZ1 in Brassica rapa L. subsp.rapifera ‘Tsuda’

LUO Yun, MA Xuan, GU Jun-Chen,YAN Hai-Fang*   

  1. College of Life Sciences, Northeast Forestry University, Harbin 150040, China
  • Received:2017-03-07 Revised:2017-07-23 Online:2018-01-12 Published:2017-08-02
  • Contact: 闫海芳, E-mail: yanhaifang224@126.com
  • Supported by:

    This study was supported by the Fundamental Research Funds for the Central Universities and the Research Training Program of Northeast Forestry University.


SIZ1, a SUMO E3 ligase involved in post-translation of proteins in plant cells, plays a role in protein interaction、location and response to environmental stresses. In order to elucidate the expression profile of SIZ1 in Tsuda, cDNA of SIZ1 gene was isolated from Tsuda. This gene was named BrSIZ1 (GenBank accession number KY441465). BrSIZ1 was 2754 bp in full length cDNA and 2571 bp in full length open reading frame (ORF), encoding a peptide with 856 amino acids. A BrSIZ1-GFP expression vector was constructed to analysis the subcellular localization. BrSIZ1-GFP was localized to nucleus, indicating that BrSIZ1 may play an important role in the nucleus. Quantitative-PCR analysis showed that the BrSIZ1 was expressed meetly in leaf and secondly in young seedling and red root epidermis, showing tissue specificity. The expression of the BrSIZ1 was induced by UV-A light in the root epidermis. The transcript level of BrSIZ1 was up-regulated when treated with temperature of 4°C or 37°C in young seedling.

Key words: Brassica rapa, SIZ1, gene cloning, location, expressing analysis

[1] Girdwood D W H, Tatham M H, Hay R T. SUMO and transcriptional regulation. Semin Cell Biol, 2004, 15: 201–210 [2] Johnson E S. Proteion modification by SUMO. Annu Rev Biochem, 2004, 73: 355–382 [3] Novatchkova M, Budhiraja R. Coupland G. SUMO conjugation in plants, Planta, 2004, 220: 1–8 [4] Johnson E S, Gupta A A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell, 2001, 106: 735–744 [5] Sharrocks A D. PIAS proteins and transcriptional regulation-more than just SUMO E3 ligases. Genes & Development, 2006, 20: 754–758 [6] Bienz M. The PHD finger, a nuclear protein-interaction domain. Trends in biochemical sciences, 2006, 31: 35–40 [7] Aravind L, Koon E V. SAP—a putative DNA-binding motif involved in chromosomal organization. Trend Biochem Sci, 2000, 25: 112–114 [8] Miura K, Jin J B, Hasegawa P M. Sumoylation, a post-translational regulatory process in plante. Curr Opin Plant Biol, 2007, 10: 495–502 [9] Huang L X, Yang S G, Zhang S C. The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant J, 2009, 60: 666–678 [10] Jin J B, Jin Y H, Lee J. The SUMO E3 ligase AtS1Z1 regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant J, 2008, 53: 530–540 [11] Thangasamy S, Guo C L, Chuang M H, Lai M H, Chen J, Jauh G Y. Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytologist, 2011, 189: 869–882 [12] Kurepa J, Walker J M, Smalle J. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis – Accumulation of SUMO1 and -2 conjugates is increased by stress. J Biol Chem, 2003, 278: 6862–6872 [13] Lee J Y, Nam J, Park H C, Na G. Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J, 2007, 49: 79–90 [14] Miura K, Jin J B, Lee J, Yoo C Y, Stirm T, Ashworth E N, Bressan R A, Yun D J, Hasegawa P M. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis.Plant Cell, 2007, 19: 1403–1414 [15] Yoo C Y, Miura K, Jin J B. SIZ1 (small ubiquitin-like modifi er) E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid. Plant Physiol, 2006, 142:1548–1558 [16] Catala R, Ouyang J, Abreu I A. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell, 2007, 19: 2952–2966 [17] Zhang S, Zhuang K, Wang S, Lv J, Ma N N, Meng Q W. A novel tomato SUMO E3 ligase, SlSIZ1, confers drought tolerance in transgenic tobacco. JIPB, 2017, doi: 10.1111/jipb.12514 [18] Calderon-Villalobos L I, Nill C, Marrocco K. The evolutionarily conserved Arabidopsis thaliana F-box protein AtFBP7 is required for efficient translation during temperature stress. Gene, 2007, 392: 106–116 [19] Zhou B, Li Y, Xu Z, Yan H, Homma S, Kawabata S. Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip (Brassica rapa). J Exp Bot, 2007, 58: 1771–1781 [20] Kawabata S, Kusahara Y, Li Y, Sakiyama R. The regulation of anthocyanin biosynthesis in Eustoma grandiflorum under low light conditions. J Jpn Soc Hort Sci, 1999, 68: 519–526 [21] Frohman M A, Dush M K, Martin G R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA, 1988, 85: 8998–9002 [22] Zhou B, Zhao X, Kawabata S, Li Y. Transient expression of a foreign gene by direct incorporation of DNA into intact plant tissue through vacuum infiltration. Biotechnol Lett, 2009, 31: 1811–1815 [23] Dingwall C, Robbins J, Dilworth S M, Roberts B, Richardson W D. The nucleoplasmin nuclear location sequence is larger and more complex than that of SV-40 large T antigen. J Cell Biol, 1988, 107: 841–849 [24] Liu F, Wang X, Su M Y, Yu M Y, Zhang S C, Lai J B, Yang C W, Wang YQ. Functional characterization of DnSIZ1, a SIZ/PIAS-type SUMO E3 ligase from Dendrobium. BMC Plant Biology, 2015, 15: 225–239 [25] Huang X, Ouyang X, Deng X W. Beyond repression of photomorphogenesis: role switching of COP/DET/FUS in light signaling. Curr Opin Plant Biol, 2014, 22: 96–103 [26] Lay H A, Sudip C, Ning W, Tokitaka O, Alfred B, Deng X W. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell, 1998, 1: 213–222

[1] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[2] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[3] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[4] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[5] WANG Yin, FENG Zhi-Wei, GE Chuan, ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, YAN Su-Xian, ZHENG Jun, ZHENG Xing-Wei. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding [J]. Acta Agronomica Sinica, 2021, 47(8): 1511-1521.
[6] DUAN Ya-Mei, LUO Xian-Lei, CHEN Shi-Qiang, GAO Yong, CHEN Jian-Min, DAI Yi. Creation of disomic addition, substitution and translocation lines of durum wheat-Thinopyrum elongatum [J]. Acta Agronomica Sinica, 2021, 47(7): 1402-1414.
[7] TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683.
[8] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
[9] YANG Qin-Li, YANG Duo-Feng, DING Lin-Yun, ZHANG Ting, ZHANG Jun, MEI Huan, HUANG Chu-Jun, GAO Yang, YE Li, GAO Meng-Tao, YAN Sun-Yi, ZHANG Tian-Zhen, HU Yan. Identification of a cotton flower organ mutant 182-9 and cloning of candidate genes [J]. Acta Agronomica Sinica, 2021, 47(10): 1854-1862.
[10] HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952.
[11] ZHANG Yi,XU Nai-Yin,GUO Li-Lei,YANG Zi-Guang,ZHANG Xiao-Qing,YANG Xiao-Ni. Optimization of test location number and replicate frequency in regional winter wheat variety trials in northern winter wheat region in China [J]. Acta Agronomica Sinica, 2020, 46(8): 1166-1173.
[12] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[13] LI Qing-Cheng,HUANG Lei,LI Ya-Zhou,FAN Chao-Lan,XIE Die,ZHAO Lai-Bin,ZHANG Shu-Jie,CHEN Xue-Jiao,NING Shun-Zong,YUAN Zhong-Wei,ZHAN Lian-Quan,LIU Deng-Cai,HAO Ming. Genetic stability of wheat-rye 6RS/6AL translocation chromosome and its transmission through gametes [J]. Acta Agronomica Sinica, 2020, 46(4): 513-519.
[14] Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861.
[15] Zhi-Hui LIU, Gao-Feng PAN, Wen CHEN, Ming-Guang QIN, Cou-Gui CAO, Chang-Long CHANG, Ming ZHAN. Effects of varieties collocation between crop seasons on the yield and resource use efficiency of maize-late rice cropping in Hubei province [J]. Acta Agronomica Sinica, 2020, 46(12): 1945-1957.
Full text



No Suggested Reading articles found!