Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (12): 3057-3070.doi: 10.3724/SP.J.1006.2022.11115

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Transcription abundances of PHYA, PHYB, and PHYC genes in response to different light treatments in Secale cereale

YANG Lu-Hao1(), WANG Li-Jian1,2(), SUN Guang-Hua1, WANG Shao-Ci1, CUI Lian-Hua1, CHEN Chang1, SONG Mei-Fang3, ZHANG Yan-Pei1, JIANG Liang-Liang1(), YANG Jian-Ping1(), WANG Chen-Yang1()   

  1. 1College of Agronomy / State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, Henan, China
    2Henan Police College, Zhengzhou 450046, Henan, China
    3Beijing Radiation Center, Beijing Academy of Science and Technology, Beijing 100875, China
  • Received:2021-12-22 Accepted:2022-03-25 Online:2022-12-12 Published:2022-04-20
  • Contact: JIANG Liang-Liang,YANG Jian-Ping,WANG Chen-Yang E-mail:yangluhao226@163.com;wanglijian2012@163.com;Jiangll@henau.edu.cn;jpyang@henau.edu.cn;xmzxwang@henau.edu.cn
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    Lhasa Regional Science and Technology Collaborative Innovation Project in 2022(QYXTZX-LS2022-01);National Natural Science Foundation of China(31871709);Key Project of Beijing Natural Science Foundation(6151002);Young Talents Project of Henan Agricultural University(30501038);Young Talents Project of Henan Agricultural University(30500823)

Abstract:

Cultivated rye (Secale cereal L.), belonging to the rye genus of the poaceae family, is a valuable food and feed crop that is highly resistant to biotic and abiotic stresses. The 1BL/1RS translocation line has improved wheat resistance to powdery mildew and stripe rust worldwide. Phytochromes are an red/far-red receptors that regulate seed germination, plant height, shade avoidance response, flowering, and other adaptive responses in plants. In this study, three phytochrome genes, ScPHYA, ScPHYB, and ScPHYC were cloned. The transcriptional abundance of ScPHYs in different tissues and light treatments was analyzed by qRT-PCR. The results showed that phys of rye had similar domains with those of Arabidopsis, rice, and wheat, and had higher amino acid sequence consistency with those of wheat and rice, suggesting that they might have similar function. The transcriptional abundances of ScPHYs were the highest in roots, and higher under dark and far-red light than other continuous light conditions, while the relative expression patterns of the three genes were slightly different in the transformation from dark to red light, far-red light, blue light, and white light. In photoperiodic response, the relative expression patterns of the three genes were similar under long-day conditions, but different under short-day conditions. These results indicated that ScPHYs may play an important role in the photomorphogenesis of rye. The transcriptional analysis of three rye phytochrome genes provides a reference for the study of rye optical signal system and a basis for exploring the application of phytochrome in rye genetic improvement and molecular breeding.

Key words: Secale cereale, phytochromes, gene cloning, light treatment, transcription abundance

Table 1

Primers for genes cloning"

基因名称
Gene name
基因编号
Accession number
正向引物序列
Forward sequence (5'-3')
反向引物序列
Reverse sequence (5'-3')
ScPHYA ScWN4R01G009900 CGGGGGACTCTTGACCATGGCA ATGTCTTCCTCAATGCCTGCTT AGTTCTTCTCCTTTACTAGT GTGCCCCATTGCCGTT
ScPHYB ScWN7R01G236700 CGGGGGACTCTTGACCATGGCA ATGGCCTCGGGAAGCCG AGTTCTTCTCCTTTACTAGT GCTCCGATCCCTACTTTCT
ScPHYC ScWN4R01G173600 CGGGGGACTCTTGACCATGGCA
ATGTCGTCGTCGCGGTCC
AGTTCTTCTCCTTTACTAGT
GAAGTTGCTCTTGCTCGTC

Table 2

Primers for qRT-PCR"

基因名称
Gene name
基因编号
Accession number
正向引物序列
Forward sequence (5'-3')
反向引物序列
Reverse sequence (5'-3')
ScPHYA ScWN4R01G009900 CAGTGAAGTTCTCTCCTGTTG TCCCTGGTGCTTGATCC
ScPHYB ScWN7R01G236700 GCTATGGGCAAATCATTAG TGGTCCTTTAGACTGCTCTGAC
ScPHYC ScWN4R01G173600 GCAAGGAACCGAAGAGCAA CCTGTCAAATCTTGTGCTACG
ScActin ScWN1R01G374800 CGTGTTGGATTCTGGTGATG AGCCACATATGCGAGCTTCT

Fig. 1

Phylogenetic analysis of phytochrome proteins The amino acid sequences were obtained from the Uniprot website and WheatOmics website, the phylogenetic analysis was performed by MEGA Version 10. AtphyA: Arabidopsis thaliana, P14712; AtphyB: Arabidopsis thaliana, P14713; AtphyC: Arabidopsis thaliana, P14714; OsphyA: Oryza sativa, A2XLG5; OsphyB: Oryza sativa, A2XFW2; OsphyC: Oryza sativa, A2XM23; ZmphyA1: Zea mays, P19862; ZmphyA2: Zea mays, Q53ZT7; ZmphyB1: Zea mays, Q6XFQ3; ZmphyB2: Zea mays, Q6XFQ2; ZmphyC1: Zea mays, Q6XFQ1; ZmphyC2: Zea mays, Q6XFQ0; SbphyA: Sorghum bicolor, Q53YS9; SbphyB: Sorghum bicolor, Q6S525; SbphyC: Sorghum bicolor, P93528; TaphyA: Triticum aestivum, Q5K5K6; TaphyB: Triticum aestivum, A9JR06; TaphyC: Triticum aestivum, Q8VWN1; ScphyA: Secale cereale, ScWN4R01G009900; ScphyB: Secale cereale, ScWN7R01G236700; ScphyC: Secale cereale, ScWN4R01G173600; HvphyA: Hordeum vulgare, Q2I7M3; HvphyB: Hordeum vulgare, Q2I7M0; HvphyC: Hordeum vulgare, Q2I714; AetphyA: Aegilops tauschii, A0A453H8S4; AetphyB: Aegilops tauschii, A0A453I867; AetphyC: Aegilops tauschii, A0A453LU83; TuphyA: Triticum urartu, M8B484; TuphyB: Triticum urartu, TuG1812G0400002191; TuphyC: Triticum urartu, M8A187."

Fig. 2

Multiple sequence alignments and function domains of phyA proteins from Secale cereale, Arabidopsis thaliana, Oryza sativa, and Triticum aestivum Multiple sequence alignments at amino acid levels and function domains were analysed by DNAMAN version 9 software and Pfam website and WheatOmics website. AtphyA: Arabidopsis thaliana, P14712; OsphyA: Oryza sativa, A2XLG5; TaphyA: Triticum aestivum, Q5K5K6; ScphyA: Secale cereale, ScWN4R01G009900."

Fig. 3

Multiple sequence alignments and function domains of phyB proteins from Secale cereale, Arabidopsis thaliana, Oryza sativa, and Triticum aestivum Multiple sequence alignments at amino acid levels and function domains are analyzed by DNAMAN version 9 software and Pfam website and WheatOmics website. AtphyB: Arabidopsis thaliana, P14713; OsphyB: Oryza sativa, A2XFW2; TaphyB: Triticum aestivum, A9JR06; ScphyB: Secale cereale, ScWN7R01G236700."

Fig. 4

Multiple sequence alignments and function domains of phyC proteins from Secale cereale, Arabidopsis thaliana, Oryza sativa, and Triticum aestivum Multiple sequence alignments at amino acid levels and function domains are analysed by DNAMAN version 9 software and Pfam website and WheatOmics website. AtphyC: Arabidopsis thaliana, P14714; OsphyC: Oryza sativa, A2XM23; TaphyC: Triticum aestivum, Q8VWN1; ScphyC: Secale cereale, ScWN4R01G173600."

Fig. 5

Relative expression levels of ScPHYA, ScPHYB, and ScPHYC in different tissues The relative expression levels of ScPHYA, ScPHYB, and ScPHYC in different tissues of Weining rye were analyzed by qRT-PCR. The relative expression level of ScPHYB in the leaf (ScPHYB/ScActin set as 1) was set as control. The bar chart shows the relative mean value of three independent replicates. The error bar represents the standard deviation. *: P < 0.05; **: P < 0.01; ***: P < 0.001."

Fig. 6

Relative expression levels of ScPHYA, ScPHYB, and ScPHYC during different continuous light condition Weining rye was grown in continuous darkness (Dk), red light (R, 22.3 μmol m-2 s-1), far-red light (FR, 1.9 μmol m-2 s-1), blue light (B, 13.0 μmol m-2 s-1), and white light (W, 17.0 μmol m-2 s-1) for 7 days. The relative expression level of ScPHYB under the darkness (ScPHYB/ScActin set as 1) was set as control. The bar chart shows the relative mean value of three independent replicates. The error bar represents the standard deviation. **: P < 0.01; ***: P < 0.001."

Fig. 7

Relative expression levels of ScPHYA, ScPHYB, and ScPHYC genes during darkness to different light conditions The seedlings of Weining rye were grown in the dark for 7 days, then transferred to red light (R, 22.3 μmol m-2 s-1), far-red light (FR, 1.9 μmol m-2 s-1), blue light (B, 13.0 μmol m-2 s-1), and white light (W, 17.0 μmol m-2 s-1) for 0, 0.25, 0.5, 1, 2, 4, 8, 16, and 24 hour(s). The relative level of ScPHYB under the darkness (ScPHYB/ScActin set as 1) was set as control. The line chart shows the relative mean value of three independent replicates. The error bar represents the standard deviation."

Fig. 8

Relative expression levels of ScPHYA, ScPHYB, and ScPHYC under photoperiodic treatments The seedlings of Weining rye were grown in long-day (LD, 16 h light / 8 h darkness) and short-day (SD, 8 h light / 16 h darkness) for 10 days, then samples were taken every 2 hours. The relative level of every gene in the end of the darkness was set as the control (set as 1). The line chart shows the relative mean value of three independent replicates. The error bar represents the standard deviation."

[1] Bauer E, Schmutzer T, Barilar I, Mascher M, Gundlach H, Martis M M, Twardziok S O, Hackauf B, Gordillo A, Wilde P, Schmidt M, Korzun V, Mayer K F, Schmid K, Schön C C, Scholz U. Towards a whole-genome sequence for rye (Secale cereale L.). Plant J, 2017, 89: 853-869.
doi: 10.1111/tpj.13436
[2] Wang C M, Zheng Q, Li L H, Niu Y C, Wang H B, Li B, Zhang X T, Xu Y F, An D G. Molecular cytogenetic characterization of a new T2BL·1RS wheat-rye chromosome translocation line resistant to stripe rust and powdery mildew. Plant Dis, 2009, 93: 124-129.
doi: 10.1094/PDIS-93-2-0124 pmid: 30764098
[3] 罗巧玲, 郑琪, 许云峰, 李立会, 韩方普, 许红星, 李滨, 马朋涛, 安调过. 390份小麦-黑麦种质材料主要农艺性状分析及优异材料的GISH与FISH鉴定. 作物学报, 2014, 40: 1331-1339.
Luo Q L, Zheng Q, Xu Y F, Li L H, Han F P, Xu H X, Li B, Ma P T, An D G. Main agronomic traits of 390 wheat-rye derivatives and GISH/FISH identification of their outstanding materials. Acta Agron Sin, 2014, 40: 1331-1339 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.01331
[4] Crespo-Herrera L A, Garkava-Gustavsson L, Åhman I. A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.). Hereditas, 2017, 154: 14.
doi: 10.1186/s41065-017-0033-5 pmid: 28559761
[5] Rabanus-Wallace M T, Hackauf B, Mascher M, Lux T, Wicker T, Gundlach H, Baez M, Houben A, Mayer K F X, Guo L L, Poland J, Pozniak C J, Walkowiak S, Melonek J, Praz C R, Schreiber M, Budak H, Heuberger M, Steuernagel B, Wulff B, Börner A, Byrns B, Čížková J, Fowler D B, Fritz A, Himmelbach A, Kaithakottil G, Keilwagen J, Keller B, Konkin D, Larsen J, Li Q, Myśków B, Padmarasu S, Rawat N, Sesiz U, Biyiklioglu-Kaya S, Sharpe A, Šimková H, Small I, Swarbreck D, Toegelová H, Tsvetkova N, Voylokov A V, Vrána J, Bauer E, Bolibok-Bragoszewska H, Doležel J, Hall A, Jia J Z, Korzun V, Laroche A, Ma X F, Ordon F, Özkan H, Rakoczy-Trojanowska M, Scholz U, Schulman A H, Siekmann D, Stojałowski S, Tiwari V K, Spannagl M, Stein N. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat Genet, 2021, 53: 564-573.
doi: 10.1038/s41588-021-00807-0 pmid: 33737754
[6] Li G W, Wang L J, Yang J P, He H, Jin H B, Li X M, Ren T H, Ren Z L, Li F, Han X, Zhao X G, Dong L L, Li Y W, Song Z P, Yan Z H, Zheng N N, Shi C L, Wang Z H, Yang S L, Xiong Z J, Zhang M L, Sun G H, Zheng X, Gou M Y, Ji C M, Du J K, Zheng H K, Doležel J, Deng X W, Stein N, Yang Q H, Zhang K P, Wang D W. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat Genet, 2021, 53: 574-584.
doi: 10.1038/s41588-021-00808-z pmid: 33737755
[7] Wang H Y, Deng X W. Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci, 2003, 8: 172-178.
pmid: 12711229
[8] Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol, 2008, 59: 281-311.
doi: 10.1146/annurev.arplant.59.032607.092859 pmid: 18257712
[9] 詹克慧, 李志勇, 侯佩, 习雨琳, 肖阳, 孟凡华, 杨建平. 利用修饰光敏色素信号途径进行品种改良的可行性. 中国农业科学, 2012, 45: 3245-3255.
Zhan K H, Li Z Y, Hou P, Xi Y L, Xiao Y, Meng F H, Yang J P. A new strategy for crop improvement through modification of phytochrome signaling pathways. Sci Agric Sin, 2012, 45: 3249-3255. (in Chinese with English abstract)
[10] Jiao Y L, Lau O S, Deng X W. Light-regulated transcriptional networks in higher plants. Nat Rev Genet, 2007, 8: 217-230.
pmid: 17304247
[11] Heijde M, Ulm R. UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci, 2012, 17: 230-237.
doi: 10.1016/j.tplants.2012.01.007 pmid: 22326562
[12] Lazaro A, Mouriz A, Piñeiro M, Jarillo J A. Red light-mediated degradation of CONSTANS by the E3 ubiquitin ligase HOS1 regulates photoperiodic flowering in Arabidopsis. Plant Cell, 2015, 27: 2437-2454.
doi: 10.1105/tpc.15.00529
[13] Hoecker U, Xu Y, Quail P H. SPA1: a new genetic locus involved in phytochrome A-specific signal transduction. Plant cell, 1998, 10: 19-33.
pmid: 9477570
[14] Shi H, Shen X, Liu R L, Xue C, Wei N, Deng X W, Zhong S W. The red light receptor phytochrome B directly enhances Substrate-E3 ligase interactions to attenuate ethylene responses. Dev Cell, 2016, 39: 597-610.
doi: 10.1016/j.devcel.2016.10.020 pmid: 27889482
[15] Xu P B, Lian H L, Xu F, Zhang T, Wang S, Wang W X, Du S S, Huang J R, Yang H Q. Phytochrome B and AGB 1 coordinately regulate photomorphogenesis by antagonistically modulating PIF3 stability in Arabidopsis. Mol Plant, 2019, 12: 229-247.
doi: 10.1016/j.molp.2018.12.003
[16] Kevei E, Nagy F. Phytochrome controlled signalling cascades in higher plants. Physiol Plant, 2003, 117: 305-313.
pmid: 12654030
[17] Quail P H. Photosensory perception and signalling in plant cells: new paradigms? Curr Opin Cell Biol, 2002, 14: 180-188.
pmid: 11891117
[18] Lagarias J C, Mercurio F M. Structure function studies on phytochrome. Identification of light-induced conformational changes in 124-kDa Avena phytochrome in vitro. J Biol Chem, 1985, 260: 2415-2423.
pmid: 3882693
[19] Matsushita T, Mochizuki N, Nagatani A. Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature, 2003, 424: 571-574.
doi: 10.1038/nature01837
[20] Rockwell N C, Su Y S, Lagarias J C. Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol, 2006, 57: 837-858.
pmid: 16669784
[21] Franklin K A, Quail P H. Phytochrome functions in Arabidopsis development. J Exp Bot, 2010, 61: 11-24.
doi: 10.1093/jxb/erp304 pmid: 19815685
[22] Li Q Q, Wu G X, Zhao Y P, Wang B B, Zhao B B, Kong D X, Wei H B, Chen C X, Wang H Y. CRISPR/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height. Plant Biotechnol J, 2020, 18: 2520-2532.
doi: 10.1111/pbi.13429
[23] Garg A K, Sawers R J H, Wang H Y, Kim J K, Walker J M, Brutnell T P, Parthasarathy M V, Vierstra R D, Wu R J. Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta, 2006, 223: 627-636.
doi: 10.1007/s00425-005-0101-3
[24] He Y N, Li Y P, Cui L X, Xie L X, Zheng C K, Zhou G H, Zhou J J, Xie X Z. Phytochrome B negatively affects cold tolerance by regulating OsDREB1 gene expression through phytochrome interacting factor-like protein OsPIL16 in rice. Front Plant Sci, 2016, 7: 1963.
[25] Shamim Z, Rashid B, Rahman S, Husnain T. Expression of drought tolerance in transgenic cotton. ScienceAsia, 2013, 39: 1-11.
doi: 10.2306/scienceasia1513-1874.2013.39.001
[26] Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
doi: 10.1038/s41477-020-0747-7
[27] Pearce S, Kippes N, Chen A, Debernardi J M, Dubcovsky J. RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways. BMC Plant Biol, 2016, 16: 141.
doi: 10.1186/s12870-016-0831-3
[28] Chen A, Li C X, Hu W, Lau M Y, Lin H Q, Rockwell N C, Martin S S, Jernstedt J A, Lagarias J C, Dubcovsky J. PHYTOCHROME C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc Natl Acad Sci USA, 2014, 111: 10037-10044.
doi: 10.1073/pnas.1409795111
[29] Thiele A, Herold M, Lenk I, Quail P H, Gatz C. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol, 1999, 120: 73-81.
pmid: 10318685
[30] Wies G, Mantese A I, Casal J J, Maddonni G Á. Phytochrome B enhances plant growth, biomass and grain yield in field-grown maize. Ann Bot, 2019, 123: 1079-1088.
doi: 10.1093/aob/mcz015
[31] Clack T, Mathews S, Sharrock R A. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol Biol, 1994, 25: 413-427.
pmid: 8049367
[32] Sharrock R A, Clack T. Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol, 2002, 130: 442-456.
pmid: 12226523
[33] 马燕斌. 小麦和玉米中光敏色素A基因的克隆与功能分析. 四川农业大学博士学位论文, 四川成都, 2010.
Ma Y B. Isolation and Functional Analysis of Phytochrome A Genes in Wheat and Maize. PhD Dissertation of Sichuan Agricultural University, Chengdu, Sichuan, China, 2010. (in Chinese with English abstract)
[34] 李壮, 马燕斌, 蔡应繁, 吴锁伟, 肖阳, 孟凡华, 付风铃, 黄玉碧, 杨建平. 小麦光敏色素基因TaPhyB3的克隆和表达分析. 作物学报, 2010, 36: 779-787.
doi: 10.3724/SP.J.1006.2010.00779
Li Z, Ma Y B, Cai Y F, Wu S W, Xiao Y, Meng F H, Fu F L, Huang Y B, Yang J P. Cloning and expression analysis of TaPhyB3 in Triticum aestivum. Acta Agron Sin, 2010, 36: 779-787. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00779
[35] Monte E, Alonso J M, Ecker J R, Zhang Y L, Li X, Young J, Austin-Phillips S, Quail P H. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell, 2003, 15: 1962-1980.
doi: 10.1105/tpc.012971
[36] Lee H J, Ha J H, Park C M. Underground roots monitor aboveground environment by sensing stem-piped light. Commun Integr Biol, 2016, 9: e1261769.
[37] Silva-Navas J, Moreno-Risueno M A, Manzano C, Pallero-Baena M, Navarro-Neila S, Téllez-Robledo B, Garcia-Mina J M, Baigorri R, Gallego F J, del Pozo J C. D-Root: a system for cultivating plants with the roots in darkness or under different light conditions. Plant J, 2015, 84: 244-255.
doi: 10.1111/tpj.12998
[38] 孙广华. 小麦光敏色素基因家族的克隆、表达分析与功能研究. 河南农业大学硕士学位论文, 河南郑州, 2016.
Sun G H. Cloning,Expression Analysis and Functional Verification of Phytochrome Genes in Common Wheat (Triticum aestivum). MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2016. (in Chinese with English abstract)
[39] 陈由, 王亚琴. 水稻光敏色素A基因克隆及其在光形态建成中的作用. 华南师范大学学报, 2014, 46: 71-76.
Chen Y, Wang Y Q. Cloning and function analysis of Rice phytochrome A gene in photomorphogenesis. J South China Norm Univ, 2014, 46: 71-76. (in Chinese with English abstract)
[40] 杨宗举, 闫蕾, 宋梅芳, 苏亮, 孟凡华, 李红丹, 白建荣, 郭林, 杨建平. 玉米光敏色素A1与A2在各种光处理下的转录表达特性. 作物学报, 2016, 42: 1462-1470.
doi: 10.3724/SP.J.1006.2016.01462
Yang Z J, Yan L, Song M F, Su L, Meng F H, Li H D, Bai J R, Guo L, Yang J P. Transcription characteristics of ZmPHYA1 and ZmPHYA2 under different light treatments in maize. Acta Agron Sin, 2016, 42: 1462-1470. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01462
[41] 张易, 杨清, 王全逸, 郭建林, 梁峰. 野生种马铃薯SpPHYB基因的克隆与表达分析. 植物生理学通讯, 2007, 43: 1020-1024.
Zhang Y, Yang Q, Wang Q Y, Guo J L, Liang F. Cloning and expression analysis of SpPHYB gene from Solanum pinnatisectum Dunal. Plant Physiol Commun, 2007, 43: 1020-1024. (in Chinese with English abstract)
[42] 牛骧, 郭林, 杨宗举, 孙蕾, 李红丹, 游光霞, 徐宏, 孟凡华, 佘跃辉, 杨建平. 2个玉米光敏色素C基因的转录丰度对多种光质处理的响应. 中国农业科学, 2017, 50: 2209-2219.
Niu X, Guo L, Yang Z J, Sun L, Li H D, You G X, Xu H, Meng F H, She Y H, Yang J P. Transcription abundances of two phytochrome C in response to different light treatments in Zea mays. Sci Agric Sin, 2017, 50: 2209-2219. (in Chinese with English abstract)
[43] Hofmann N R. Opposites attract: some phytochromes do not form homodimers. Plant Cell, 2009, 21: 698.
doi: 10.1105/tpc.109.210311 pmid: 19286966
[44] Sánchez-Lamas M, Lorenzo C D, Cerdán P D. Bottom-up assembly of the phytochrome network. PLoS Genet, 2016, 12: e1006413.
[1] WANG Mu-Mu, HE Yan-Fan, ZHENG Yong-Sheng, WANG Hui, WANG Li-Yuan, WANG Dong-Jian, ZHANG Han, LI Ru-Yu. Fine mapping and cloning of a seed shattering gene SH8 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 1948-1956.
[2] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[3] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[4] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[5] TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683.
[6] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
[7] YANG Qin-Li, YANG Duo-Feng, DING Lin-Yun, ZHANG Ting, ZHANG Jun, MEI Huan, HUANG Chu-Jun, GAO Yang, YE Li, GAO Meng-Tao, YAN Sun-Yi, ZHANG Tian-Zhen, HU Yan. Identification of a cotton flower organ mutant 182-9 and cloning of candidate genes [J]. Acta Agronomica Sinica, 2021, 47(10): 1854-1862.
[8] HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952.
[9] Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861.
[10] XUE Xiao-Meng,LI Jian-Guo,BAI Dong-Mei,YAN Li-Ying,WAN Li-Yun,KANG Yan-Ping,HUAI Dong-Xin,LEI Yong,LIAO Bo-Shou. Expression profiles of FAD2 genes and their responses to cold stress in peanut [J]. Acta Agronomica Sinica, 2019, 45(10): 1586-1594.
[11] Hong-Dan LI,Lei YAN,Lei SUN,Xiao-Cong FAN,Shi-Zhan CHEN,Yan ZHANG,Lin GUO,Guang-Xia YOU,Zhuang LI,Zong-Ju YANG,Liang SU,Jian-Ping YANG. Transcription Abundances of CRY1b and CRY2 Genes in Response to Different Light Treatments in Maize [J]. Acta Agronomica Sinica, 2018, 44(9): 1290-1300.
[12] Huan TAN,Yu-Hui LIU,Li-Xia LI,Li WANG,Yuan-Ming LI,Jun-Lian ZHANG. Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1021-1031.
[13] Chen-Yu MA,Wei-Min ZHAN,Wen-Liang LI,Meng-Di ZHANG,Zhang-Ying XI. Cloning and Function Analysis of ZmNAOD Gene in Maize [J]. Acta Agronomica Sinica, 2018, 44(10): 1433-1441.
[14] Chao-Xian LIU, Jiu-Guang WANG, Xiu-Peng MEI, Ting-Ting YU, Guo-Qiang WANG, Lian ZHOU, Yi-Lin CAI. Cloning and Imprinting Characterization Analyses of Paternally Expressed Gene ZmVIL1 in Maize Endosperm [J]. Acta Agronomica Sinica, 2018, 44(03): 376-384.
[15] Yun-Fei LIANG, Lin-Cheng ZHANG, Quan-Ming PU, Zhen-Ze LEI, Song-Mei SHI, Yu-Peng JIANG, Xue-Song REN, Qi-Guo GAO. Cloning of BoLH27 Gene from Cabbage and Phenotype Analysis of Transgenic Cabbage [J]. Acta Agronomica Sinica, 2018, 44(03): 397-404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .