Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (12): 3057-3070.doi: 10.3724/SP.J.1006.2022.11115
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
YANG Lu-Hao1(), WANG Li-Jian1,2(), SUN Guang-Hua1, WANG Shao-Ci1, CUI Lian-Hua1, CHEN Chang1, SONG Mei-Fang3, ZHANG Yan-Pei1, JIANG Liang-Liang1(), YANG Jian-Ping1(), WANG Chen-Yang1()
[1] |
Bauer E, Schmutzer T, Barilar I, Mascher M, Gundlach H, Martis M M, Twardziok S O, Hackauf B, Gordillo A, Wilde P, Schmidt M, Korzun V, Mayer K F, Schmid K, Schön C C, Scholz U. Towards a whole-genome sequence for rye (Secale cereale L.). Plant J, 2017, 89: 853-869.
doi: 10.1111/tpj.13436 |
[2] |
Wang C M, Zheng Q, Li L H, Niu Y C, Wang H B, Li B, Zhang X T, Xu Y F, An D G. Molecular cytogenetic characterization of a new T2BL·1RS wheat-rye chromosome translocation line resistant to stripe rust and powdery mildew. Plant Dis, 2009, 93: 124-129.
doi: 10.1094/PDIS-93-2-0124 pmid: 30764098 |
[3] | 罗巧玲, 郑琪, 许云峰, 李立会, 韩方普, 许红星, 李滨, 马朋涛, 安调过. 390份小麦-黑麦种质材料主要农艺性状分析及优异材料的GISH与FISH鉴定. 作物学报, 2014, 40: 1331-1339. |
Luo Q L, Zheng Q, Xu Y F, Li L H, Han F P, Xu H X, Li B, Ma P T, An D G. Main agronomic traits of 390 wheat-rye derivatives and GISH/FISH identification of their outstanding materials. Acta Agron Sin, 2014, 40: 1331-1339 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.01331 |
|
[4] |
Crespo-Herrera L A, Garkava-Gustavsson L, Åhman I. A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.). Hereditas, 2017, 154: 14.
doi: 10.1186/s41065-017-0033-5 pmid: 28559761 |
[5] |
Rabanus-Wallace M T, Hackauf B, Mascher M, Lux T, Wicker T, Gundlach H, Baez M, Houben A, Mayer K F X, Guo L L, Poland J, Pozniak C J, Walkowiak S, Melonek J, Praz C R, Schreiber M, Budak H, Heuberger M, Steuernagel B, Wulff B, Börner A, Byrns B, Čížková J, Fowler D B, Fritz A, Himmelbach A, Kaithakottil G, Keilwagen J, Keller B, Konkin D, Larsen J, Li Q, Myśków B, Padmarasu S, Rawat N, Sesiz U, Biyiklioglu-Kaya S, Sharpe A, Šimková H, Small I, Swarbreck D, Toegelová H, Tsvetkova N, Voylokov A V, Vrána J, Bauer E, Bolibok-Bragoszewska H, Doležel J, Hall A, Jia J Z, Korzun V, Laroche A, Ma X F, Ordon F, Özkan H, Rakoczy-Trojanowska M, Scholz U, Schulman A H, Siekmann D, Stojałowski S, Tiwari V K, Spannagl M, Stein N. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat Genet, 2021, 53: 564-573.
doi: 10.1038/s41588-021-00807-0 pmid: 33737754 |
[6] |
Li G W, Wang L J, Yang J P, He H, Jin H B, Li X M, Ren T H, Ren Z L, Li F, Han X, Zhao X G, Dong L L, Li Y W, Song Z P, Yan Z H, Zheng N N, Shi C L, Wang Z H, Yang S L, Xiong Z J, Zhang M L, Sun G H, Zheng X, Gou M Y, Ji C M, Du J K, Zheng H K, Doležel J, Deng X W, Stein N, Yang Q H, Zhang K P, Wang D W. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat Genet, 2021, 53: 574-584.
doi: 10.1038/s41588-021-00808-z pmid: 33737755 |
[7] |
Wang H Y, Deng X W. Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci, 2003, 8: 172-178.
pmid: 12711229 |
[8] |
Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol, 2008, 59: 281-311.
doi: 10.1146/annurev.arplant.59.032607.092859 pmid: 18257712 |
[9] | 詹克慧, 李志勇, 侯佩, 习雨琳, 肖阳, 孟凡华, 杨建平. 利用修饰光敏色素信号途径进行品种改良的可行性. 中国农业科学, 2012, 45: 3245-3255. |
Zhan K H, Li Z Y, Hou P, Xi Y L, Xiao Y, Meng F H, Yang J P. A new strategy for crop improvement through modification of phytochrome signaling pathways. Sci Agric Sin, 2012, 45: 3249-3255. (in Chinese with English abstract) | |
[10] |
Jiao Y L, Lau O S, Deng X W. Light-regulated transcriptional networks in higher plants. Nat Rev Genet, 2007, 8: 217-230.
pmid: 17304247 |
[11] |
Heijde M, Ulm R. UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci, 2012, 17: 230-237.
doi: 10.1016/j.tplants.2012.01.007 pmid: 22326562 |
[12] |
Lazaro A, Mouriz A, Piñeiro M, Jarillo J A. Red light-mediated degradation of CONSTANS by the E3 ubiquitin ligase HOS1 regulates photoperiodic flowering in Arabidopsis. Plant Cell, 2015, 27: 2437-2454.
doi: 10.1105/tpc.15.00529 |
[13] |
Hoecker U, Xu Y, Quail P H. SPA1: a new genetic locus involved in phytochrome A-specific signal transduction. Plant cell, 1998, 10: 19-33.
pmid: 9477570 |
[14] |
Shi H, Shen X, Liu R L, Xue C, Wei N, Deng X W, Zhong S W. The red light receptor phytochrome B directly enhances Substrate-E3 ligase interactions to attenuate ethylene responses. Dev Cell, 2016, 39: 597-610.
doi: 10.1016/j.devcel.2016.10.020 pmid: 27889482 |
[15] |
Xu P B, Lian H L, Xu F, Zhang T, Wang S, Wang W X, Du S S, Huang J R, Yang H Q. Phytochrome B and AGB 1 coordinately regulate photomorphogenesis by antagonistically modulating PIF3 stability in Arabidopsis. Mol Plant, 2019, 12: 229-247.
doi: 10.1016/j.molp.2018.12.003 |
[16] |
Kevei E, Nagy F. Phytochrome controlled signalling cascades in higher plants. Physiol Plant, 2003, 117: 305-313.
pmid: 12654030 |
[17] |
Quail P H. Photosensory perception and signalling in plant cells: new paradigms? Curr Opin Cell Biol, 2002, 14: 180-188.
pmid: 11891117 |
[18] |
Lagarias J C, Mercurio F M. Structure function studies on phytochrome. Identification of light-induced conformational changes in 124-kDa Avena phytochrome in vitro. J Biol Chem, 1985, 260: 2415-2423.
pmid: 3882693 |
[19] |
Matsushita T, Mochizuki N, Nagatani A. Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature, 2003, 424: 571-574.
doi: 10.1038/nature01837 |
[20] |
Rockwell N C, Su Y S, Lagarias J C. Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol, 2006, 57: 837-858.
pmid: 16669784 |
[21] |
Franklin K A, Quail P H. Phytochrome functions in Arabidopsis development. J Exp Bot, 2010, 61: 11-24.
doi: 10.1093/jxb/erp304 pmid: 19815685 |
[22] |
Li Q Q, Wu G X, Zhao Y P, Wang B B, Zhao B B, Kong D X, Wei H B, Chen C X, Wang H Y. CRISPR/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height. Plant Biotechnol J, 2020, 18: 2520-2532.
doi: 10.1111/pbi.13429 |
[23] |
Garg A K, Sawers R J H, Wang H Y, Kim J K, Walker J M, Brutnell T P, Parthasarathy M V, Vierstra R D, Wu R J. Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta, 2006, 223: 627-636.
doi: 10.1007/s00425-005-0101-3 |
[24] | He Y N, Li Y P, Cui L X, Xie L X, Zheng C K, Zhou G H, Zhou J J, Xie X Z. Phytochrome B negatively affects cold tolerance by regulating OsDREB1 gene expression through phytochrome interacting factor-like protein OsPIL16 in rice. Front Plant Sci, 2016, 7: 1963. |
[25] |
Shamim Z, Rashid B, Rahman S, Husnain T. Expression of drought tolerance in transgenic cotton. ScienceAsia, 2013, 39: 1-11.
doi: 10.2306/scienceasia1513-1874.2013.39.001 |
[26] |
Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
doi: 10.1038/s41477-020-0747-7 |
[27] |
Pearce S, Kippes N, Chen A, Debernardi J M, Dubcovsky J. RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways. BMC Plant Biol, 2016, 16: 141.
doi: 10.1186/s12870-016-0831-3 |
[28] |
Chen A, Li C X, Hu W, Lau M Y, Lin H Q, Rockwell N C, Martin S S, Jernstedt J A, Lagarias J C, Dubcovsky J. PHYTOCHROME C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc Natl Acad Sci USA, 2014, 111: 10037-10044.
doi: 10.1073/pnas.1409795111 |
[29] |
Thiele A, Herold M, Lenk I, Quail P H, Gatz C. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol, 1999, 120: 73-81.
pmid: 10318685 |
[30] |
Wies G, Mantese A I, Casal J J, Maddonni G Á. Phytochrome B enhances plant growth, biomass and grain yield in field-grown maize. Ann Bot, 2019, 123: 1079-1088.
doi: 10.1093/aob/mcz015 |
[31] |
Clack T, Mathews S, Sharrock R A. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol Biol, 1994, 25: 413-427.
pmid: 8049367 |
[32] |
Sharrock R A, Clack T. Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol, 2002, 130: 442-456.
pmid: 12226523 |
[33] | 马燕斌. 小麦和玉米中光敏色素A基因的克隆与功能分析. 四川农业大学博士学位论文, 四川成都, 2010. |
Ma Y B. Isolation and Functional Analysis of Phytochrome A Genes in Wheat and Maize. PhD Dissertation of Sichuan Agricultural University, Chengdu, Sichuan, China, 2010. (in Chinese with English abstract) | |
[34] |
李壮, 马燕斌, 蔡应繁, 吴锁伟, 肖阳, 孟凡华, 付风铃, 黄玉碧, 杨建平. 小麦光敏色素基因TaPhyB3的克隆和表达分析. 作物学报, 2010, 36: 779-787.
doi: 10.3724/SP.J.1006.2010.00779 |
Li Z, Ma Y B, Cai Y F, Wu S W, Xiao Y, Meng F H, Fu F L, Huang Y B, Yang J P. Cloning and expression analysis of TaPhyB3 in Triticum aestivum. Acta Agron Sin, 2010, 36: 779-787. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.00779 |
|
[35] |
Monte E, Alonso J M, Ecker J R, Zhang Y L, Li X, Young J, Austin-Phillips S, Quail P H. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell, 2003, 15: 1962-1980.
doi: 10.1105/tpc.012971 |
[36] | Lee H J, Ha J H, Park C M. Underground roots monitor aboveground environment by sensing stem-piped light. Commun Integr Biol, 2016, 9: e1261769. |
[37] |
Silva-Navas J, Moreno-Risueno M A, Manzano C, Pallero-Baena M, Navarro-Neila S, Téllez-Robledo B, Garcia-Mina J M, Baigorri R, Gallego F J, del Pozo J C. D-Root: a system for cultivating plants with the roots in darkness or under different light conditions. Plant J, 2015, 84: 244-255.
doi: 10.1111/tpj.12998 |
[38] | 孙广华. 小麦光敏色素基因家族的克隆、表达分析与功能研究. 河南农业大学硕士学位论文, 河南郑州, 2016. |
Sun G H. Cloning,Expression Analysis and Functional Verification of Phytochrome Genes in Common Wheat (Triticum aestivum). MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2016. (in Chinese with English abstract) | |
[39] | 陈由, 王亚琴. 水稻光敏色素A基因克隆及其在光形态建成中的作用. 华南师范大学学报, 2014, 46: 71-76. |
Chen Y, Wang Y Q. Cloning and function analysis of Rice phytochrome A gene in photomorphogenesis. J South China Norm Univ, 2014, 46: 71-76. (in Chinese with English abstract) | |
[40] |
杨宗举, 闫蕾, 宋梅芳, 苏亮, 孟凡华, 李红丹, 白建荣, 郭林, 杨建平. 玉米光敏色素A1与A2在各种光处理下的转录表达特性. 作物学报, 2016, 42: 1462-1470.
doi: 10.3724/SP.J.1006.2016.01462 |
Yang Z J, Yan L, Song M F, Su L, Meng F H, Li H D, Bai J R, Guo L, Yang J P. Transcription characteristics of ZmPHYA1 and ZmPHYA2 under different light treatments in maize. Acta Agron Sin, 2016, 42: 1462-1470. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01462 |
|
[41] | 张易, 杨清, 王全逸, 郭建林, 梁峰. 野生种马铃薯SpPHYB基因的克隆与表达分析. 植物生理学通讯, 2007, 43: 1020-1024. |
Zhang Y, Yang Q, Wang Q Y, Guo J L, Liang F. Cloning and expression analysis of SpPHYB gene from Solanum pinnatisectum Dunal. Plant Physiol Commun, 2007, 43: 1020-1024. (in Chinese with English abstract) | |
[42] | 牛骧, 郭林, 杨宗举, 孙蕾, 李红丹, 游光霞, 徐宏, 孟凡华, 佘跃辉, 杨建平. 2个玉米光敏色素C基因的转录丰度对多种光质处理的响应. 中国农业科学, 2017, 50: 2209-2219. |
Niu X, Guo L, Yang Z J, Sun L, Li H D, You G X, Xu H, Meng F H, She Y H, Yang J P. Transcription abundances of two phytochrome C in response to different light treatments in Zea mays. Sci Agric Sin, 2017, 50: 2209-2219. (in Chinese with English abstract) | |
[43] |
Hofmann N R. Opposites attract: some phytochromes do not form homodimers. Plant Cell, 2009, 21: 698.
doi: 10.1105/tpc.109.210311 pmid: 19286966 |
[44] | Sánchez-Lamas M, Lorenzo C D, Cerdán P D. Bottom-up assembly of the phytochrome network. PLoS Genet, 2016, 12: e1006413. |
[1] | WANG Mu-Mu, HE Yan-Fan, ZHENG Yong-Sheng, WANG Hui, WANG Li-Yuan, WANG Dong-Jian, ZHANG Han, LI Ru-Yu. Fine mapping and cloning of a seed shattering gene SH8 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 1948-1956. |
[2] | CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324. |
[3] | ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026. |
[4] | XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120. |
[5] | TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683. |
[6] | YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415. |
[7] | YANG Qin-Li, YANG Duo-Feng, DING Lin-Yun, ZHANG Ting, ZHANG Jun, MEI Huan, HUANG Chu-Jun, GAO Yang, YE Li, GAO Meng-Tao, YAN Sun-Yi, ZHANG Tian-Zhen, HU Yan. Identification of a cotton flower organ mutant 182-9 and cloning of candidate genes [J]. Acta Agronomica Sinica, 2021, 47(10): 1854-1862. |
[8] | HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952. |
[9] | Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861. |
[10] | XUE Xiao-Meng,LI Jian-Guo,BAI Dong-Mei,YAN Li-Ying,WAN Li-Yun,KANG Yan-Ping,HUAI Dong-Xin,LEI Yong,LIAO Bo-Shou. Expression profiles of FAD2 genes and their responses to cold stress in peanut [J]. Acta Agronomica Sinica, 2019, 45(10): 1586-1594. |
[11] | Hong-Dan LI,Lei YAN,Lei SUN,Xiao-Cong FAN,Shi-Zhan CHEN,Yan ZHANG,Lin GUO,Guang-Xia YOU,Zhuang LI,Zong-Ju YANG,Liang SU,Jian-Ping YANG. Transcription Abundances of CRY1b and CRY2 Genes in Response to Different Light Treatments in Maize [J]. Acta Agronomica Sinica, 2018, 44(9): 1290-1300. |
[12] | Huan TAN,Yu-Hui LIU,Li-Xia LI,Li WANG,Yuan-Ming LI,Jun-Lian ZHANG. Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1021-1031. |
[13] | Chen-Yu MA,Wei-Min ZHAN,Wen-Liang LI,Meng-Di ZHANG,Zhang-Ying XI. Cloning and Function Analysis of ZmNAOD Gene in Maize [J]. Acta Agronomica Sinica, 2018, 44(10): 1433-1441. |
[14] | Chao-Xian LIU, Jiu-Guang WANG, Xiu-Peng MEI, Ting-Ting YU, Guo-Qiang WANG, Lian ZHOU, Yi-Lin CAI. Cloning and Imprinting Characterization Analyses of Paternally Expressed Gene ZmVIL1 in Maize Endosperm [J]. Acta Agronomica Sinica, 2018, 44(03): 376-384. |
[15] | Yun-Fei LIANG, Lin-Cheng ZHANG, Quan-Ming PU, Zhen-Ze LEI, Song-Mei SHI, Yu-Peng JIANG, Xue-Song REN, Qi-Guo GAO. Cloning of BoLH27 Gene from Cabbage and Phenotype Analysis of Transgenic Cabbage [J]. Acta Agronomica Sinica, 2018, 44(03): 397-404. |
|