Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (12): 3328-3341.doi: 10.3724/SP.J.1006.2023.23075

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Establishment of critical nitrogen concentration model and nitrogen nutrient diagnosis for summer maize (Zea mays L.) leaves at vegetative growth stage under different phosphorus and potassium application rates

LIU Dong(), ZHANG Chuan, REN Hao, WANG Hong-Zhang, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, ZHANG Yong-Li*(), LIU Peng*()   

  1. State Key Laboratory of Crop Biology, Shandong Agricultural University / College of Agriculture, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2022-11-08 Accepted:2023-06-29 Online:2023-12-12 Published:2023-08-04
  • Contact: * E-mail: liupengsdau@126.com;E-mail: zhangyl@sdau.edu.cn
  • Supported by:
    Key Research and Development project of Shandong Province(LJNY202103);Shandong Province Key Agricultural Project for Application Technology Innovation(SDAIT-02-08);Major Scientific and Technological Innovation Project in Shandong Province(2021CXGC010804-05)

Abstract:

The experiments were carried out on the long-term positioning experiment platform of Dongping Agricultural Research Institute since 2010. The split-plot experimental design was used with different P2O5 input in the main plots and different K2O input in the sub-plot and different N input in the sub-sub plots. The P2O5 values were 0, 90, 120, and 150 kg hm-2, which were represented as P0, P1, P2, and P3, respectively. The K2O was 0, 180, 240, and 300 kg hm-2, expressed in terms of K0, K1, K2, and K3, respectively. The N was 0, 180, 240, and 300 kg hm-2, denoted as N0, N1, N2, and N3, respectively. From 2020 to 2021, Denghai 605 was used as the experimental material to deeply analyze the effect of nutrient application rate on dry matter and nitrogen concentration of summer maize leaves, aimed to build a critical nitrogen dilution curve for the nutrient growth stage of summer maize leaves, and explore the feasibility of diagnosing and evaluating nitrogen nutrition status of summer maize with nitrogen nutrition index model under different fertilizer application rates. The results showed that the dry matter and nitrogen concentration of summer maize leaves prior anthesis increased with the increment of nitrogen, phosphorus, and potassium fertilizer application. The nitrogen concentration in leaves decreased with the growth process and the accumulation of leaves dry matter, showing a dilution phenomenon. The variations of leaves dry matter and nitrogen concentration could be divided into two groups: nitrogen limitation and non-nitrogen limitation. Further, the curve model of critical nitrogen concentration at the vegetative growth stage of summer maize leaves under different phosphorus and potassium levels was constructed: NLC0 = 2.745 LDM-0.529, NLC1 = 3.245 LDM-0.334, NLC2 = 3.557 LDM-0.290, NLC3 = 3.639 LDM-0.286. Nitrogen nutrition index was calculated based on the critical nitrogen concentration dilution curve, which was highly significantly related to the relative leaves dry matter and the relative grain yield. Combining the linear plus platform relationship between nitrogen nutrition index and the relative leaves dry and the relative grain yield, the crop nitrogen status could be well evaluated under the conditions of nitrogen limitation and non-nitrogen limitation. Therefore, the critical nitrogen concentration and nitrogen index at vegetative growth stage of summer maize can effectively predict the critical nitrogen concentration and characterize the nitrogen nutrient status of summer maize.

Key words: summer maize, leaves N concentration, critical N dilution curve, N nutrition index, N nutrition diagnosis

Table 1

Physical and chemical properties of soil before sowing under different treatments"

磷钾水平
Phosphorus-potassium rate
氮水平
Nitrogen rate
pH 有机质
Organic matter
(g kg-1)
速效氮
Available N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
P0K0 N0 6.87 9.87 24.69 23.44 96.44
N1 6.92 10.18 33.63 21.36 96.16
N2 7.04 11.23 37.06 20.21 93.18
N3 7.12 11.82 39.02 20.19 93.22
P1K1 N0 6.93 10.33 26.31 27.33 116.44
N1 7.07 11.77 29.62 26.13 112.15
N2 7.15 11.45 32.12 26.32 113.77
N3 7.17 12.07 36.18 25.11 108.45
P2K2 N0 6.92 10.12 24.33 30.03 122.36
N1 7.06 11.25 28.19 29.07 126.35
N2 7.11 11.33 33.14 28.77 128.54
N3 7.15 11.45 34.37 28.67 122.07
P3K3 N0 7.01 10.23 27.13 32.14 124.66
N1 7.14 11.44 30.08 29.17 123.54
N2 7.03 11.76 31.56 29.33 127.83
N3 7.07 11.84 36.32 29.78 123.43

Table 2

Variance analysis of aboveground dry matter, leaves dry matter, leaves nitrogen concentration, and yield of summer maize"

年度
Year
因子
Factor
拔节期 V6 小喇叭口期 V9 大喇叭口期 V12 开花期 VT 产量
Yield
PDM LDM NLa PDM LDM NLa PDM LDM NLa PDM LDM NLa
2020 PK ** *** *** ** *** *** ** *** *** ** *** *** ***
N *** *** *** *** *** *** *** *** *** *** *** *** ***
PK×N ** *** ** *** *** * ** *** ** ** *** *** ***
2021 PK *** *** *** ** *** *** ** *** *** *** *** *** ***
N *** *** *** *** *** *** *** *** *** ** *** *** ***
PK×N *** *** *** *** *** *** ** *** *** *** *** *** ***

Fig. 1

Effects of different nitrogen phosphorus and potassium application rates on the dynamics of aboveground dry matter in summer maize P0K0: 0 kg P2O5 hm-2 and 0 kg K2O hm-2; P1K1: 90 kg P2O5 hm-2 and 180 kg K2O hm-2; P2K2: 120 kg P2O5 hm-2 and 240 kg K2O hm-2; P3K3: 150 kg P2O5 hm-2 and 300 kg K2O hm-2. V6: jointing stage; V9: small belling stage; V12: big belling stage; VT: tasseling stages. The error line represents the standard deviation. Different lowercase letters mean significantly different among the treatments in the same year at P < 0.05."

Fig. 2

Effects of different nitrogen phosphorus and potassium application rates on the dynamics of leaves dry matter in summer maize Abbreviations are the same as those given in Fig. 1. The error line represents the standard deviation. Different lowercase letters mean significantly different among the treatments in the same year at P < 0.05."

Fig. 3

Effects of different nitrogen phosphorus and potassium application rates on the dynamics of nitrogen concentration in summer maize leaves Abbreviations are the same as those given in Fig. 1. The error line represents the standard deviation."

Fig. 4

Effects of different nitrogen phosphorus and potassium application rates on summer maize grain yield Abbreviations are the same as those given in Fig. 1. The error line represents the standard deviation. Different lowercase letters mean significantly different among the treatments in the same year at P < 0.05."

Fig. 5

Nitrogen dilution curve based on aboveground dry matter accumulation and dry matter accumulation of summer maize leave under different phosphorus and potassium application rates Treatments are the same as those given in Fig. 1."

Fig. 6

Validation of the NPC and NLC dilution curve using data from experiments performed in 2021 Treatments are the same as those given in Fig. 1. The symbol (●) is the leaves NC-value. The solid lines (─) represent the NC dilution curves. The dotted lines (┄) on either side represent the curves for the minimum limits, which are developed using data from N-limiting (▲) and non-N-limiting (■) treatments from 2020. Nmin and Nmax are minimum and maximum of nitrogen concentration. The symbols (Δ) and () represent non-N-limiting and N-limiting values in 2021."

Table 3

Verification of dilution curve of critical nitrogen concentration"

部位
Position
P0K0 P1K1 P2K2 P3K3
RMSE n-RMSE RMSE n-RMSE RMSE n-RMSE RMSE n-RMSE
地上部Aboveground 0.242 9.878% 0.203 8.342% 0.227 8.977% 0.257 9.939%
叶片Leaves 0.232 9.664% 0.219 7.603% 0.264 8.189% 0.308 9.213%

Fig. 7

Dynamic changes of leaves nitrogen nutrient index (NNI) in summer maize leaves under different nitrogen, phosphorus, and potassium application levels Nitrogen nutrition indices of a, b, c, and d were calculated according to the leaves nitrogen dilution curve based on aboveground dry matter accumulation of summer maize. The nitrogen nutrient indices of e, f, g, and h were calculated according to the leaves nitrogen dilution curve based on leaves dry matter accumulation of summer maize. Abbreviations are the same as those given in Fig. 1."

Fig. 8

Relationship between nitrogen nutrition index (NNI) and relative leaves dry matter (RLDM) and relative grain yield (RY) of summer maize under different nitrogen phosphorus and potassium application rates Abbreviations are the same as those given in Fig. 1. ***: P < 0.001"

[1] He H Y, Hu Q, Li R, Pan X B, Huang B X, He Q J. Regional gap in maize production, climate and resource utilization in China. Field Crops Res, 2020, 254: 107830.
doi: 10.1016/j.fcr.2020.107830
[2] 刘晓永. 中国农业生产中的养分平衡与需求研究. 中国农业科学院博士学位论文,北京, 2018.
Liu X Y. Study on Nutrients Balance and Requirement in Agricultural Production in China. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2018. (in Chinese with English abstract)
[3] 周青云, 李梦初, 漆栋良, 黄朝阳, 王紫丞, 徐茵, 李继福. 拔节期淹水条件下施氮量对春玉米生理特性的影响. 灌溉排水学报, 2020, 39(增刊2): 40-44.
Zhou Q Y, Li M C, Qi D L, Huang C Y, Wang Z Y, Xu Y, Li J F. Effects of nitrogen rate on physiological characteristics of spring maize under waterlogging at jointing stage. J Irrig Drain, 2020, 39(S2): 40-44. (in Chinese with English abstract)
[4] 王玉娜, 米国华. 北方春玉米施肥现状及节肥潜力. 玉米科学, 2021, 29(3): 151-158.
Wang Y N, Mi G H. Fertilizer application in maize production in northern China: current status and fertilization optimal potential. J Maize Sci, 2021, 29(3): 151-158 (in Chinese with English abstract).
[5] 杨锦忠, 张洪生. 玉米氮、磷、钾、水和二氧化碳资源积累与利用的Meta分析. 玉米科学, 2015, 23(5): 136-141.
Yang J Z, Zhang H S. Meta-analysis on resource consumption and use of nitrogen, phosphorus, potassium, water and carbon dioxide in maize. J Maize Sci, 2015, 23(5): 136-141. (in Chinese with English abstract)
[6] Zhao B. Determining of a critical dilution curve for plant nitrogen concentration in winter barley. Field Crops Res, 2014, 160: 64-72.
doi: 10.1016/j.fcr.2014.02.016
[7] El-Sobky E S E A, Abdo A I. Efficacy of using biochar, phosphorous and nitrogen fertilizers for improving maize yield and nitrogen use efficiencies under alkali clay soil. J Plant Nutr, 2020, 44: 467-485.
doi: 10.1080/01904167.2020.1845369
[8] Du L, Li Q, Li L, Li L, Wu Y W, Zhou F, Zhao B, Li X L, Liu Q L, Kong F L, Yuan J C. Construction of a critical nitrogen dilution curve for maize in Southwest China. Sci Rep, 2020, 10: 656-663.
doi: 10.1038/s41598-019-57296-9
[9] 侯云鹏, 杨建, 孔丽丽, 尹彩侠, 李前, 秦裕波, 王立春, 谢佳贵. 不同施磷水平对春玉米产量、养分吸收及转运的影响. 玉米科学, 2017, 25(3): 123-130.
Hou Y P, Yang J, Kong L L, Yin C X, Li Q, Qin Y B, Wang L C, Xie J G. Effect of different phosphorus levels on yield, nitrogen, phosphorus and potassium absorption and translocation of spring maize. J Maize Sci, 2017, 25(3): 123-130. (in Chinese with English abstract)
[10] 黄倩楠, 党海燕, 黄婷苗, 侯赛宾, 王朝辉. 我国主要麦区农户施肥评价及减肥潜力分析. 中国农业科学, 2020, 53: 4816-4834.
doi: 10.3864/j.issn.0578-1752.2020.23.009
Huang Q N, Dang H Y, Huang T M, Hou S B, Wang Z H. Evaluation of farmers’ fertilizer application and fertilizer reduction potentials in major wheat production regions of China. Sci Agric Sin, 2020, 53: 4816-4834 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.23.009
[11] 杨富亿, 文波龙, 李晓宇, 杨艳丽, 万斯昂, 欧阳玲, 刘文虎, 王昭伟, 孟祥鹏, 李重祥, 阿拉木斯, 韩奇. 达里诺尔湿地水环境和鱼类多样性调查: III. 达里湖水体中的氮和磷含量及分布. 湿地科学, 2021, 19: 47-58.
Yang F Y, Wen B L, Li X Y, Yang Y L, Wan S A, Ou-Yang L, Liu W H, Wang Z W, Meng X P, Li C X, Alamusi, Han Q. Investigation of water environment and fish diversity in dalinore wetland: III. Nitrogen and phosphorus content and distribution in the water body of Dalry Lake. Wetland Sci, 2021, 19: 47-58. (in Chinese with English abstract)
[12] Pettigrew W T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant, 2010, 133: 670-681.
doi: 10.1111/ppl.2008.133.issue-4
[13] Jiang W T, Liu X H, Wang Y. Responses to potassium application and economic optimum K rate of maize under different soil indigenous K supply. Sustainability, 2018, 10: 2267-2277.
doi: 10.3390/su10072267
[14] Amaresh P, Meena S L, Behera U K. Growth, yield and nutrient uptake of maize (Zea mays L.) as influenced by tillage and potassium management under conservation agriculture. Indian J Agron, 2019, 63: 383-387.
[15] Ulrich A. Physiological bases for assessing the nutritional requirements of plants. Annu Rev Plant Physiol, 1952, 3: 207-228.
doi: 10.1146/arplant.1952.3.issue-1
[16] Lemaire G, Salette J, Sigogne M, Terrassonr J P. Relationship between growth dynamics of herbage stand and nitrogen harvest dynamics: study on environmental effects. Agronomy, 1984, 4: 423-430.
[17] 赵犇, 姚霞, 田永超, 刘小军, 曹卫星, 朱艳. 基于临界氮浓度的小麦地上部氮亏缺模型. 应用生态学报, 2012, 23: 3141-3148.
pmid: 23431802
Zhao B, Yao X, Tian Y C, Liu X J, Cao W X, Zhu Y. Accumulative nitrogen deficit models of wheat aboveground part based on critical nitrogen concentration. Chin J Appl Ecol, 2012, 23: 3141-3148. (in Chinese with English abstract)
pmid: 23431802
[18] Yao X, Ata-Ul-Karim S T, Zhu Y, Tian Y C, Liu X J, Cao W X. Development of critical nitrogen dilution curve in rice based on leaf dry matter. Eur J Agron, 2014, 55: 20-28.
doi: 10.1016/j.eja.2013.12.004
[19] 刘秋霞, 任涛, 张亚伟, 廖世鹏, 李小坤, 丛日环, 鲁剑巍. 华中区域直播冬油菜临界氮浓度稀释曲线的建立与应用. 中国农业科学, 2019, 52: 2835-2844.
doi: 10.3864/j.issn.0578-1752.2019.16.009
Liu Q X, Ren T, Zhang Y W, Liao S P, Li X K, Cong R H, Lu J W. Establishment and application of critical nitrogen concentration dilution curve of direct seeding winter rapeseed in central China. Sci Agric Sin, 2019, 52: 2835-2844 (in Chinese with English abstract).
[20] Herrmann A, Taube F. The range of the critical nitrogen dilution curve for maize (Zea mays L.) can be extended until silage maturity. Agron J, 2004, 96: 1131-1138.
doi: 10.2134/agronj2004.1131
[21] Noura Z, Marianne B, Gilles B, Annie C, Nicolas T, Athyna N C, Michel C N, Leon E P. Chlorophyll measurements and nitrogen nutrition index for the evaluation of corn nitrogen status. Agron J, 2008, 100: 271-273.
doi: 10.2134/agronj2007.0059
[22] 付江鹏, 贺正, 贾彪, 刘慧芳, 李振洲, 刘志. 滴灌玉米临界氮稀释曲线与氮素营养诊断研究. 作物学报, 2020, 46: 290-299.
doi: 10.3724/SP.J.1006.2020.93027
Fu J P, He Z, Jia B, Liu H F, Li Z Z, Liu Z. Critical nitrogen dilution curve and nitrogen nutrition diagnosis of maize with drip irrigation. Acta Agron Sin, 2020, 46: 290-299. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.93027
[23] Zhao B, Ata-Ul-Karim S T, Liu Z, Ning D F, Xiao J F, Liu Z G, Qin A Z, Nan J Q, Duan A W. Development of a critical nitrogen dilution curve based on leaf dry matter for summer maize. Field Crops Res, 2017, 208: 60-68.
doi: 10.1016/j.fcr.2017.03.010
[24] 苏文楠, 解君, 韩娟, 刘铁宁, 韩清芳. 夏玉米不同部位干物质临界氮浓度稀释曲线的构建及对产量的估计. 作物学报, 2021, 47: 530-545.
doi: 10.3724/SP.J.1006.2021.03021
Su W N, Xie J, Han J, Liu T N, Han Q F. Construction of critical nitrogen dilution curve based on dry matter in different organs of summer maize and estimation of grain yield. Acta Agron Sin, 2021, 47: 530-545. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.03021
[25] Justes E, Mary B, Machet J M, Thelier H L. Determination of a critical nitrogen dilution curve for winter wheat crops. Ann Bot, 1994, 74: 397-407.
doi: 10.1006/anbo.1994.1133
[26] Zamuner E C, Loveras J, Echeverr H E. Use of a critical phosphorus dilution curve to improve potato crop nutritional management. Am J Potato Res, 2016, 93: 392-403.
doi: 10.1007/s12230-016-9514-8
[27] Jamieson P D, Porter J R, Wilson D R. A test of computer simulation model ARC-WHEAT1 on wheat crops grown in New Zealand. Field Crops Res, 1991, 27: 337-350.
doi: 10.1016/0378-4290(91)90040-3
[28] 叶君, 高聚林, 王志刚, 于晓芳, 孙继颖, 李丽君, 高英波, 王海燕, 贾宁, 高鑫, 崔超. 施氮量对超高产春玉米花粒期叶片光合特性及产量的影响. 玉米科学, 2011, 19(6): 74-77.
Ye J, Gao J L, Wang Z G, Yu X F, Sun J Y, Li L J, Gao Y B, Wang H Y, Jia N, Gao X, Cui C. Effects of nitrogen on leaf photosynthesis and grain yield of super high-yield spring maize during the flowering and milking stage. J Maize Sci, 2011, 19(6): 74-77. (in Chinese with English abstract)
[29] Yao X, Zhao B, Tian Y C, Tian Y C, Liu X J, Ni J, Cao W J, Zhu Y. Using leaf dry matter to quantify the critical nitrogen dilution curve for winter wheat cultivated in eastern China. Field Crops Res, 2014, 159: 33-42.
doi: 10.1016/j.fcr.2013.12.007
[30] Ata-Ul-Karim S T, Liu X, Lu Z Z, Zheng H B, Cao W X, Zhu Y. Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve. Field Crops Res, 2017, 201: 32-40.
doi: 10.1016/j.fcr.2016.10.009
[31] Ata-Ul-Karim S T, Zhu Y, Liu X, Cao Q, Tian Y C, Cao W X. Comparison of different critical nitrogen dilution curves for nitrogen diagnosis in rice. Sci Rep, 2017, 7: 42679.
doi: 10.1038/srep42679 pmid: 28262685
[32] Lemaire G, Jeuffroy M H, Gastal F. Diagnosis tool for plant and crop N status in vegetative stage. EurJ Agron, 2008, 28: 614-624.
[33] 安志超, 黄玉芳, 汪洋, 赵亚南, 岳松华, 师海斌, 叶优良. 不同氮效率夏玉米临界氮浓度稀释模型与氮营养诊断. 植物营养与肥料学报, 2019, 25: 123-133.
An Z C, Huang Y F, Wang Y, Zhao Y N, Yue S H, Shi H B, Ye Y L. Critical nitrogen concentration dilution model and nitrogen nutrition diagnosis in summer maize with different nitrogen efficiencies. J Plant Nutr Fert, 2019, 25: 123-133. (in Chinese with English abstract)
[34] 梁效贵, 张经廷, 周丽丽, 李旭辉, 周顺利. 华北地区夏玉米临界氮稀释曲线和氮营养指数研究. 作物学报, 2013, 39: 292-299.
doi: 10.3724/SP.J.1006.2013.00292
Liang X G, Zhang J T, Zhou L L, Li X H, Zhou S L. Critical nitrogen dilution curve and nitrogen nutrition index for summer maize in North China plain. Acta Agron Sin, 2013, 39: 292-299. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00292
[35] 刘苗, 刘朋召, 师祖姣, 王小利, 王瑞, 李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断. 中国农业科学, 2022, 55: 932-947.
doi: 10.3864/j.issn.0578-1752.2022.05.008
Liu M, Liu P Z, Shi Z J, Wang X L, Wang R, Li J. Critical nitrogen dilution curve and nitrogen nutrition diagnosis of summer maize under different nitrogen and phosphorus application rates. Sci Agric Sin, 2022, 55: 932-947 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.05.008
[36] 刘朋召, 师祖姣, 宁芳, 王瑞, 王小利, 李军. 不同降雨状况下渭北旱地春玉米临界氮稀释曲线与氮素营养诊断. 作物学报, 2020, 46: 1225-1237.
doi: 10.3724/SP.J.1006.2020.03007
Liu P Z, Shi Z J, Ning F, Wang R, Wang X L, Li J. Critical nitrogen dilution curves and nitrogen nutrition diagnosis of spring maize under different precipitation patterns in Weibei dryland. Acta Agron Sin, 2020, 46: 1225-1237. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.03007
[1] ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629.
[2] LI Hui, WANG Xu-Min, LIU Miao, LIU Peng-Zhao, LI Qiao-Li, WANG Xiao-Li, WANG Rui, LI Jun. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize [J]. Acta Agronomica Sinica, 2023, 49(5): 1292-1304.
[3] ZHANG Jun-Jie, CHEN Jin-Ping, TANG Yu-Lou, ZHANG Rui, CAO Hong-Zhang, WANG Li-Juan, MA Meng-Jin, WANG Hao, WANG Yong-Chao, GUO Jia-Meng, KRISHNA SV Jagadish, YANG Qing-Hua, SHAO Rui-Xin. Effects of drought stress before and after anthesis on photosynthetic characteristics and yield of summer maize after re-watering [J]. Acta Agronomica Sinica, 2023, 49(5): 1397-1409.
[4] YUE Hai-Wang, HAN Xuan, WEI Jian-Wei, ZHENG Shu-Hong, XIE Jun-Liang, CHEN Shu-Ping, PENG Hai-Cheng, BU Jun-Zhou. Comprehensive evaluation of maize hybrids tested in Huang-Huai-Hai summer maize regional trial based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1231-1248.
[5] LIU Xin-Meng, CHENG Yi, LIU Yu-Wen, PANG Shang-Shui, YE Xiu-Qin, BU Yan-Xia, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, REN Hao, LIU Peng. Difference analysis of yield and resource use efficiency of modern summer maize varieties in Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2023, 49(5): 1363-1371.
[6] ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892.
[7] SONG Jie, WANG Shao-Xiang, LI Liang, HUANG Jin-Ling, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2023, 49(2): 539-551.
[8] LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510.
[9] WANG Rui, LI Xiang-Ling, GUO Dong, WANG Xin-Bing, MA Wei, LI Cong-Feng, ZHAO Ming, ZHOU Bao-Yuan. Effects of application nitrogen on carbon and nitrogen metabolism of summer maize grain under post-silking heat stress [J]. Acta Agronomica Sinica, 2023, 49(12): 3342-3351.
[10] ZHANG Zhen-Bo, QU Xin-Yue, YU Ning-Ning, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize [J]. Acta Agronomica Sinica, 2022, 48(9): 2366-2376.
[11] PEI Li-Zhen, CHEN Yuan-Xue, ZHANG Wen-Wen, XIAO Hua, ZHANG Sen, ZHOU Yuan, XU Kai-Wei. Effects of organic material returned on photosynthetic performance and nitrogen metabolism of ear leaf in summer maize [J]. Acta Agronomica Sinica, 2022, 48(8): 2115-2124.
[12] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[13] ZHANG Jia-Kang, LI Fei, SHI Shu-De, YANG Hai-Bo. Construction and application of the critical nitrogen concentration dilution model of sugar beet in Inner Mongolia, China [J]. Acta Agronomica Sinica, 2022, 48(2): 488-496.
[14] ZHU Ya-Di, WANG Hui-Qin, WANG Hong-Zhang, REN Hao, LYU Jian-Hua, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, YIN Fu-Wei, LIU Peng. Evaluation and identification index of heat tolerance in different summer maize varieties at V12 stage [J]. Acta Agronomica Sinica, 2022, 48(12): 3130-3143.
[15] SONG Jie, REN Hao, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LI Liang, WANG Shao-Xiang, HUANG Jin-Ling, LIU Peng. Effect of potassium application on vascular tissue structure and material transport properties in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2908-2919.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .