Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (12): 3342-3351.doi: 10.3724/SP.J.1006.2023.33003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of application nitrogen on carbon and nitrogen metabolism of summer maize grain under post-silking heat stress

WANG Rui1,2(), LI Xiang-Ling1,*(), GUO Dong3, WANG Xin-Bing2, MA Wei2, LI Cong-Feng2, ZHAO Ming2, ZHOU Bao-Yuan2,*()   

  1. 1College of Agronomy and Biotechnology, Hebei Normal University of Science & Technology / Hebei Key Laboratory of Crop Stress Biology, Qinhuangdao 066004, Hebei, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    3Haikou Cigar Research Institute, Hainan Provincial Branch of China National Tobacco Corporation, Haikou 571100, Hainan, China
  • Received:2023-01-10 Accepted:2023-06-29 Online:2023-12-12 Published:2023-07-21
  • Contact: * E-mail: zhoubaoyuan@caas.cn; E-mail: ncqyfz2008@126.com
  • Supported by:
    National Key Research and Development Program of China(2022YFD2300803);Central Public-interest Scientific Institution Basal Research Fund(S2022ZD05);China Agriculture Research System of MOF and MARA(CARS-02-12)

Abstract:

Post-silking heat stress is one of the main stresses affecting grain filling and yield formation of summer maize in the Huang-Huai-Hai plains. At present, it has been confirmed that increasing nitrogen application can alleviate the inhibition of post-silking heat stress on the yield formation of wheat, maize, and rice, but the regulatory pathways and physiological mechanisms remain unclear. In this study, two maize varieties Zhengdan 958 (ZD958) and Xianyu 335 (XY335) were selected in pot experiment. To study the effects of increased nitrogen application on carbon and nitrogen metabolism of maize under heat stress during post-silking stage, two temperature treatments [ambient temperature (CK) and heat stress (HS)], three nitrogen application levels [low nitrogen application rate (LN): 120 kg hm-2, middle nitrogen application rate (MN): 240 kg hm-2, and high nitrogen application rate (HN): 360 kg hm-2] were set. The results showed that the dry weight of ZD958 and XY335 cultivars at maturity stage decreased by 10.6%-19.3% after 20 days of post-silking heat stress (35oC) compared with the ambient temperature. However, the decrease of kernel dry weight under heat stress was gradually decreased with the increase of nitrogen application rate, and the decrease rate (10.6%-11.2%) of kernel dry weight under medium nitrogen application rate (MN) and high nitrogen application rate (HN) was lower than that (16.2%-19.3%) under low nitrogen application rate (LN), which indicating that increased nitrogen application could significantly increase maize kernel dry weight under post-silking heat stress. This was mainly due to the increasing application of nitrogen effectively alleviated the inhibitory effect of early post-silking heat stress on maize grain nitrogen metabolism, and significantly increased the activities of key enzymes of nitrogen metabolism such as glutamine synthetase (GS) and glutamate synthetase (GOGAT). At the same time, the activities of sucrose phosphate synthetase (SPS) and sucrose synthetase (SS), which were key enzymes of carbon metabolism, were maintained, and the synthesis of soluble sugar in grains was increased, thus ensuring a larger amount of material for grain filling. In conclusion, increasing nitrogen application can alleviate the inhibition of post-silking heat stress on grain carbon and nitrogen metabolism and promote the accumulation of assimilates in grain and increase the kernel weight and yield, which provides a way for the resistant cultivation of summer maize in the Huang-Huai-Hai plains.

Key words: summer maize, heat stress, nitrogen application, carbon and nitrogen metabolism

Table 1

Fertilizer regimes per pot of different treatments in the experiment (g)"

处理
Treatment
尿素 Urea 过磷酸钙
Superphosphate calcium
氯化钾
Potassium chloride
播种期
Sowing stage
拔节期
Jointing stage
开花期
Silking stage
低施氮量LN 7 4 3 40 11
中施氮量MN 14 9 6
高施氮量HN 21 13 9

Fig. 1

Temperature (day/night) 20 days after pollination in 2022"

Table 2

Kernel weight at summer maize maturity of different treatments in 2021 and 2022 (mg kernel-1)"

温度处理
Temperature
氮肥处理
N treatment
2021 2022
郑单958 ZD958 先玉335 XY335 郑单958 ZD958 先玉335 XY335
自然温度CK 低施氮量LN 276.3±3.58 c 286.8±3.72 b 283.1±3.24 c 292.3±3.28 b
中施氮量MN 305.5±3.89 a 312.7±4.06 a 309.2±3.55 ab 316.6±3.46 a
高施氮量HN 309.4±4.01 a 315.6±4.08 a 314.5±3.63 a 319.5±3.36 a
增温处理HS 低施氮量LN 231.7±3.17 d 230.9±3.17 d 237.2±2.89 d 236.2±2.78 d
中施氮量MN 257.6±3.45 c 255.8±3.45 c 262.3±3.12 c 259.3±3.05 c
高施氮量HN 276.5±3.81 b 280.5±3.68 b 281.4±3.34 b 283.5±3.34 b
变异来源 Source of variation
温度Temperature (T) 0.0286 0.0204 0.0114 0.0247
氮肥Nitrogen (N) 0.0343 0.0319 0.0275 0.0308
温度×氮肥 T×N 0.0212 0.0131 0.0058 0.0091

Fig. 2

Soluble sugar content in summer maize grain of different treatments in 2022 Treatments and varieties are the same as those given in Table 2. Different letters indicate significant differences at the 0.05 probability level."

Fig. 3

The protein content in summer maize grain of different treatments in 2022 Treatments and varieties are the same as those given in Table 2. Different letters indicate significant differences at the 0.05 probability level."

Fig. 4

The activity of sucrose synthase in summer maize grain of different treatments in 2022 Treatments and varieties are the same as those given in Table 2. Different letters indicate significant differences at the 0.05 probability level."

Fig. 5

The activity of sucrose phosphate synthase in summer maize grain of different treatments in 2022 Treatments and varieties are the same as those given in Table 2. Different letters indicate significant differences at the 0.05 probability level."

Fig. 6

The activity of glutamine synthase in summer maize grain of different treatments in 2022 Treatments and varieties are the same as those given in Table 2. Different letters indicate significant differences at the 0.05 probability level."

Fig. 7

Activity of glutamate synthase in summer maize grain of different treatments in 2022 Treatments and varieties are the same as those given in Table 2. Different letters indicate significant differences at the 0.05 probability level."

[1] 仇焕广, 李新海, 余嘉玲. 中国玉米产业: 发展趋势与政策建议, 农业经济问题, 2021, (7): 4-16.
Qiu H G, Li X H, Yu J L. China’s maize industry: development trends and policy suggestions. Issues Agric Ecol, 2021, (7): 4-16. (in Chinese with English abstract)
[2] Xiao D P, Qi Y Q, Shen Y J, Tao F L, Moiwo J P, Liu J F, Wang R D, Zhang H, Liu F S. Impact of warming climate and cultivar change on maize phenology in the last three decades in North China Plain. Theor Appl Clim, 2016, 124: 653-661.
doi: 10.1007/s00704-015-1450-x
[3] 和骅芸, 胡琦, 潘学标, 马雪晴, 胡莉婷, 王晓晨, 何奇瑾. 气候变化背景下华北平原夏玉米花期高温热害特征及适宜播期分析. 中国农业气象, 2020, 41: 1-15.
doi: 10.3969/j.issn.1000-6362.2020.01.001
He J Y, Hu Q, Pan X B, Ma X Q, Hu L T, Wang X C, He Q J. Characteristics of heat damage during flowering period of summer maize and suitable sowing date in North China Plain under climate change. Chin J Agroneteor, 2020, 41: 1-15. (in Chinese with English abstract)
[4] 商蒙非, 石晓宇, 赵炯超, 李硕, 褚庆全. 气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征. 作物学报, 2023, 49: 167-176.
doi: 10.3724/SP.J.1006.2023.23007
Shang M F, Shi X Y, Zhao J C, Li S, Chu Q Q. Spatiotemporal variation of high temperature stress in different regions of China under climate change. Acta Agron Sin, 2023, 49: 167-176. (in Chinese with English abstract)
[5] 侯昕芳, 王媛媛, 黄收兵, 董昕, 陶洪斌, 王璞. 花期前后高温对玉米花粉发育及结实率的影响. 中国农业大学学报, 2020, 25(3): 10-16.
Hou X F, Wang Y Y, Huang S B, Dong X, Tao H B, Wang P. Effects of high temperature during flowering on pollen development and seed setting rate of maize (Zea mays L.). J China Agric Univ, 2020, 25(3): 10-16. (in Chinese with English abstract)
[6] 高英波, 张慧, 单晶, 薛艳芳, 钱欣, 代红翠, 刘开昌, 李宗新. 吐丝前高温胁迫对不同耐热型夏玉米产量及穗发育特征的影响. 中国农业科学, 2020, 53: 3954-3963.
doi: 10.3864/j.issn.0578-1752.2020.19.009
Gao Y B, Zhang H, Shan J, Xue Y F, Qian X, Dai H C, Liu K C, Li Z X. Effects of pre-silking high temperature stress on yield and ear development characteristics of different heat-resistant summer maize cultivars. Sci Agric Sin, 2020, 53: 3954-3963. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.19.009
[7] Lizaso J I, Ruiz-Ramos M, Rodríguez L, Gabaldon-Leal C, Oliveira J A, Lorite I J, Sánchez D, García E, Rodríguez A. Impact of high temperatures in maize: Phenology and yield components. Field Crops Res, 2018, 216: 129-140.
doi: 10.1016/j.fcr.2017.11.013
[8] Rattalino E J I, Mayer L I, Otegui M E. Heat stress in temperate and tropical maize hybrids: kernel growth, water relations and assimilate availability for grain filling. Field Crops Res, 2014, 166: 162-172.
doi: 10.1016/j.fcr.2014.06.018
[9] Rattalino E J I, Otegui M E. Heat stress in temperate and tropical maize hybrids: differences in crop growth, biomass partitioning and reserves use. Field Crops Res, 2012, 130: 87-98.
doi: 10.1016/j.fcr.2012.02.009
[10] Cicchino M, Edreira J I R, Uribelarrea M, Otegui M E. Heat stress in field-grown maize: response of physiological determinants of grain yield. Crop Sci, 2010, 50: 1438-1448.
doi: 10.2135/cropsci2009.10.0574
[11] 王海堂, 张复君. 灌浆期高温胁迫对玉米籽粒灌浆及产量的影响. 热带农业科学, 2021, 41: 11-16.
Wang H T, Zhang F J. Effect of high temperature stress on maize grain filling and yield. Chin J Trop Agric, 2021, 41: 11-16. (in Chinese with English abstract)
[12] Shen S, Zhang L, Liang X G, Zhao X, Lin S, Qu L H, Liu Y P, Gao Z, Ruan Y L, Zhou S L. Delayed pollination and low availability of assimilates are major factors causing maize kernel abortion. J Exp Bot, 2018, 69: 1599-1613.
doi: 10.1093/jxb/ery013 pmid: 29365129
[13] Parrotta L, Faleri C, Cresti M, Cai G. Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes. Planta, 2016, 243: 43-63.
doi: 10.1007/s00425-015-2394-1 pmid: 26335855
[14] Thussagunpanit J, Jutamanee K, Kaveeta L, Witith C A, Porn P, Sureeporn H, Apichart S. Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. J Plant Growth Regul, 2015, 34: 320-331.
doi: 10.1007/s00344-014-9467-4
[15] Yan P, Chen Y Q, Dadouma A, Tao Z Q, Sui P. Effect of nitrogen regimes on narrowing the magnitude of maize yield penalty caused by high temperature stress in North China Plain. Plant Soil Environ, 2017, 64: 131-138.
[16] 段骅, 傅亮, 剧成欣, 刘立军, 杨建昌. 氮素穗肥对高温胁迫下水稻结实和稻米品质的影响. 中国水稻科学, 2013, 27: 591-602.
Duan H, Fu L, Ju C X, Liu L J, Yang J C. Effects of application of nitrogen as panicle-promoting fertilizer on seed setting and grain quality of rice under high temperature stress. Chin J Rice Sci, 2013, 27: 591-602. (in Chinese with English abstract)
[17] 缪乃耀, 唐设, 陈文珠, 李刚华, 刘正辉, 王绍华, 丁承强, 陈琳, 丁艳锋. 氮素粒肥缓解水稻灌浆期高温胁迫的生理机制研究. 南京农业大学学报, 2017, 40: 1-10.
Miao N Y, Tang S, Chen W S, Li G H, Liu Z H, Wang S H, Ding C Q, Chen L, Ding Y F. Research of nitrogen granular fertilizer alleviating high temperature stress at rice grain filling stage and its physiological mechanism. J Nanjing Agric Univ, 2017, 40: 1-10. (in Chinese with English abstract)
[18] 江文文, 尹燕枰, 王振林, 李勇, 杨卫兵, 彭佃亮, 杨东清, 崔正勇, 卢昆丽, 李艳霞. 花后高温胁迫下氮肥追施后移对小麦产量及旗叶生理特性的影响. 作物学报, 2014, 40: 942-949.
doi: 10.3724/SP.J.1006.2014.00942
Jiang W W, Yin Y P, Wang Z L, Li Y, Yang W B, Peng Y L, Yang D Q, Cui Z Y, Lu K L, Li Y X. Effects of postponed application of nitrogen fertilizer on yield and physiological characteristics of flag leaf in wheat under post-anthesis heat stress. Acta Agron Sin, 2014, 40: 942-949. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00942
[19] 慕宇, 朱荣, 孙立影, 康建宏. 氮肥基追比对花后高温胁迫下春小麦淀粉形成的影响. 干旱地区农业研究, 2017, 35(5): 208-215.
Mu Y, Zhu R, Sun L Y, Kong J H. Effect of nitrogen dressing ratios and high temperature on the formation of starch after anthsis of spring wheat. Agric Res Arid Areas, 2017, 35(5): 208-215. (in Chinese with English abstract)
[20] 王新磊, 吕新芳. 氮代谢参与植物逆境抵抗的作用机理研究进展. 广西植物, 2020, 40: 583-591.
Wang X L, Lyu X F. Research progress on mechanism of nitrogen metabolism involved in plant stress resistance. Guihaia, 2020, 40: 583-591. (in Chinese with English abstract)
[21] Meng S, Su L, Li Y, Wang Y J, Zhang C X, Zhao Z. Nitrate and ammonium contribute to the distinct nitrogen metabolism of populus simonii during moderate salt stress. PLoS One, 2016, 11: e0150354.
doi: 10.1371/journal.pone.0150354
[22] Chen J, Wang P, Ma Z M, Lyu X D, Liu T T, Siddique K H M. Optimum water and nitrogen supply regulates root distribution and produces high grain yields in spring wheat (Triticum aestivum L.) under permanent raised bed tillage in arid northwest China. Soil Tillage Res, 2018, 181: 117-126.
doi: 10.1016/j.still.2018.04.012
[23] AgamiR A, Alamri S A M, Abde-Mageed T A, Abousekken M S M, Hashem M. Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants. Agric Water Manag, 2018, 210: 261-270.
doi: 10.1016/j.agwat.2018.08.034
[24] Wang X L, Tang D Q. Proteomic analysis of pakchoi leaves and roots under glycine-nitrogen conditions. Plant Physiol Biochem, 2014, 75: 96-104.
doi: 10.1016/j.plaphy.2013.12.012
[25] Averina N G, Beyzaei Z, Shcherbakov R A, Usatov A V. Role of nitrogen metabolism in the development of salt tolerance in barley plants. Russ J Plant Physiol, 2014, 61: 97-104.
doi: 10.1134/S1021443713060022
[26] Khoshbakht D, Asghari M R, Haghighi M. Influence of foliar application of polyamines on growth, gas-exchange characteristics, and chlorophyll fluorescence in bakraii citrus under saline conditions. Photosynthetica, 2018, 56: 731-742.
doi: 10.1007/s11099-017-0723-2
[27] 张永平, 许爽, 杨少军, 陆世钧, 陈幼源. 外源亚精胺对低温胁迫下甜瓜幼苗生长和抗氧化系统的影响. 植物生理学报, 2017, 53: 1087-1096.
Zhang Y P, Xu S, Yang S J, Lu S J, Chen Y Y. Effect of exogenous spermidine on the growth and antioxidant system of melon seedlings under low temperature stress. Plant Physiol J, 2017, 53: 1087-1096. (in Chinese with English abstract)
[28] Xiong X, Chang L Y, Khalid M, Zhang J J, Huang D F. Alleviation of drought stress by nitrogen application in Brassica campestris. Chinensis L. Agronomy, 2018, 8: 66.
doi: 10.3390/agronomy8050066
[29] Zhong C, Cao X C, Hu J J, Zhu L F, Zhang J H, Huang J L, Jin Q Y. Nitrogen metabolism in adaptation of photosynthesis to water stress in rice grown under different nitrogen levels. Front Plant Sci, 2017, 8: 1079.
doi: 10.3389/fpls.2017.01079 pmid: 28690622
[30] Liu Y H, Offler C E, Ruan Y L. Cell wall invertase promotes fruit set under heat stress by suppressing ROS-independent cell death. Plant Physiol, 2016, 172: 163-180.
doi: 10.1104/pp.16.00959
[31] Liang X G, Gao Z, Zhang L, Shen S, Zhao X, Liu Y P, Zhou L L, Paul M J, Zhou S L. Seasonal and diurnal patterns of non-structural carbohydrates in source and sink tissues in field maize. BMC Plant Biol, 2019, 19: 508.
doi: 10.1186/s12870-019-2068-4
[32] Ordóñez R A, Roxana S, Cossaniet C M, Slafer G A. Yield response to heat stress as affected by nitrogen availability in maize. Field Crops Res, 2015, 183: 184-203.
doi: 10.1016/j.fcr.2015.07.010
[33] Yang M, Geng M Y, Shen P F, Chen X H, Li Y J, Wen X. Effect of post-silking drought stress on the expression profiles of genes involved in carbon and nitrogen metabolism during leaf senescence in maize (Zea mays L.). Plant Physiol Bioch, 2019, 135: 304-309.
doi: 10.1016/j.plaphy.2018.12.025
[34] 周卫霞, 董朋飞, 王秀萍, 李潮海. 弱光胁迫对不同基因型玉米籽粒发育和碳氮代谢的影响. 作物学报, 2013, 39: 1826-1834.
doi: 10.3724/SP.J.1006.2013.01826
Zhou W X, Dong P F, Wang X P, Li C H. Effects of low light stress on kernel setting and metabolism of carbon and nitrogen in different maize (Zea mays L.) genotypes. Acta Agron Sin, 2013, 39: 1826-1834. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01826
[35] Yuan L Y, Tang L, Zhu S D, Hou J F, Chen G H, Liu F, Liu S, Wang C G. Influence of heat stress on leaf morphology and nitrogen-carbohydrate metabolisms in two wucai (Brassica campestris L.) genotypes. Acta Soc Bot Pol, 2017, 86: 3554.
[36] Wang J, Fu P X, Lu W P, Lu D L. Application of moderate nitrogen levels alleviates yield loss and grain quality deterioration caused by post-silking heat stress in fresh waxy maize. Crop J, 2020, 8: 1081-1092.
doi: 10.1016/j.cj.2019.11.007
[37] Del Castello F, Nejamkin A, Cassia R, Correa-Aragunde N, Fernández B, Foresi N, Lombardo C, Ramirez L, Lamattina L. The era of nitric oxide in plant biology. Twenty years tying up loose ends. Nitric Oxide, 2019, 85: 17-27.
doi: 10.1016/j.niox.2019.01.013
[38] 张馨月, 王寅, 陈健, 陈安吉, 王莉颖, 郭晓颖, 牛雅郦, 张星宇, 陈利东, 高强. 水分和氮素对玉米苗期生长、根系形态及分布的影响. 中国农业科学, 2019, 52: 34-44.
doi: 10.3864/j.issn.0578-1752.2019.01.004
Zhang X Y, Wang Y, Chen J, Chen A J, Wang L Y, Guo X Y, Niu Y L, Zhang X Y, Chen L D, Gao Q. Effects of soil water and nitrogen on plant growth, root morphology and spatial distribution of maize at the seedling stage. Sci Agric Sin, 2019, 52: 34-44. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.01.004
[39] 赵艺欣, 王岩, 刘轶欧, 曹莹, 赵天宏. 铵态氮肥施用量对春小麦氮代谢的影响. 贵州农业科学, 2012, 40(3): 51-54.
Zhao Y X, Wang Y, Liu Y O, Cao Y, Zhao T H. Effect of ammonium nitrogen fertilizer dosage on nitrogen metabolism of spring wheat. Guizhou Agric Sci, 2012, 40(3): 51-54. (in Chinese with English abstract)
[40] 张莉, 荐红举, 杨博, 张翱翔, 张超, 杨鸿, 张立源, 刘列钊, 徐新福, 卢坤, 李加纳. 甘蓝型油菜蔗糖磷酸合酶(SPS)基因家族成员鉴定及表达分析. 作物学报, 2018, 44: 197-207.
doi: 10.3724/SP.J.1006.2018.00197
Zhang L, Jian H J, Yang B, Zhang A X, Zhang C, Yang H, Zhang L Y, Liu L Z, Xu X F, Lu K, Li J N. Genome-wide Analysis and expression profiling of SPS gene family in Brassica nupus L. Acta Agron Sin, 2018, 44: 197-207 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00197
[41] 殷梦瑶, 陈功, 罗海华, 彭金剑, 高欣, 袁长凯, 汤飞宇. 外施吲哚乙酸对棉铃蔗糖代谢及产量性状的影响. 核农学报, 2021, 35: 1931-1940.
doi: 10.11869/j.issn.100-8551.2021.08.1931
Yin M Y, Chen G, Luo H H, Peng J J, Gao X, Yuan C K, Tang F Y. Effects of external IAA application on sucrose metabolism with cotton bolls and within-boll yield components. J Nucl Agric Sci, 2021, 35: 1931-1940. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2021.08.1931
[1] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
[2] CAO Yu-Jun, LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun. Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province [J]. Acta Agronomica Sinica, 2023, 49(8): 2183-2195.
[3] LI Rong, MIAN You-Ming, HOU Xian-Qing, LI Pei-Fu, WANG Xi-Na. Effects of nitrogen application on decomposition and nutrient release of returning straw, soil fertility, and maize yield [J]. Acta Agronomica Sinica, 2023, 49(7): 2012-2022.
[4] MEI Xiu-Peng, ZHAO Zi-Kun, JIA Xin-Yao, BAI Yang, LI Mei, GAN Yu-Ling, YANG Qiu-Yue, CAI Yi-Lin. Heat-inducible transcription factor ZmNF-YC13 regulates heat stress response genes to improve heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(7): 1747-1757.
[5] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[6] ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629.
[7] LI Hui, WANG Xu-Min, LIU Miao, LIU Peng-Zhao, LI Qiao-Li, WANG Xiao-Li, WANG Rui, LI Jun. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize [J]. Acta Agronomica Sinica, 2023, 49(5): 1292-1304.
[8] ZHANG Jun-Jie, CHEN Jin-Ping, TANG Yu-Lou, ZHANG Rui, CAO Hong-Zhang, WANG Li-Juan, MA Meng-Jin, WANG Hao, WANG Yong-Chao, GUO Jia-Meng, KRISHNA SV Jagadish, YANG Qing-Hua, SHAO Rui-Xin. Effects of drought stress before and after anthesis on photosynthetic characteristics and yield of summer maize after re-watering [J]. Acta Agronomica Sinica, 2023, 49(5): 1397-1409.
[9] YUE Hai-Wang, HAN Xuan, WEI Jian-Wei, ZHENG Shu-Hong, XIE Jun-Liang, CHEN Shu-Ping, PENG Hai-Cheng, BU Jun-Zhou. Comprehensive evaluation of maize hybrids tested in Huang-Huai-Hai summer maize regional trial based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1231-1248.
[10] LIU Xin-Meng, CHENG Yi, LIU Yu-Wen, PANG Shang-Shui, YE Xiu-Qin, BU Yan-Xia, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, REN Hao, LIU Peng. Difference analysis of yield and resource use efficiency of modern summer maize varieties in Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2023, 49(5): 1363-1371.
[11] ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892.
[12] GAO Chun-Hua, FENG Bo, LI Guo-Fang, LI Zong-Xin, LI Sheng-Dong, CAO Fang, CI Wen-Liang, ZHAO Hai-Jun. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis [J]. Acta Agronomica Sinica, 2023, 49(3): 821-832.
[13] SONG Jie, WANG Shao-Xiang, LI Liang, HUANG Jin-Ling, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2023, 49(2): 539-551.
[14] LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510.
[15] LIU Dong, ZHANG Chuan, REN Hao, WANG Hong-Zhang, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, ZHANG Yong-Li, LIU Peng. Establishment of critical nitrogen concentration model and nitrogen nutrient diagnosis for summer maize (Zea mays L.) leaves at vegetative growth stage under different phosphorus and potassium application rates [J]. Acta Agronomica Sinica, 2023, 49(12): 3328-3341.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .