Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (12): 3399-3410.doi: 10.3724/SP.J.1006.2023.31004

• RESEARCH NOTES • Previous Articles    

Physiological characteristics and genetic research of rolled leaf mutant1 (RL1) in wheat (Triticum aestivum L.)

LIU Ye1,2(), LI Yue1, YUAN Ming-Yang1, WEI Nai-Cui1, GUAN Pan-Feng3, ZHAO Jia-Jia1, WU Bang-Bang1, ZHENG Xing-Wei1, HAO Yu-Qiong1, QIAO Ling1,*(), ZHENG Jun1,*()   

  1. 1Institute of Wheat Research, Shanxi Agriculture University / Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Linfen 041000, Shanxi, China
    2School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
    3School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2023-01-09 Accepted:2023-06-29 Online:2023-12-12 Published:2023-08-04
  • Contact: * E-mail: qiaolingsmile@163.com; E-mail: sxnkyzj@126.com
  • About author:**Contributed equally to this work
  • Supported by:
    Research Program Sponsored by State Key Laboratory of Integrative Sustainable Dryland Agriculture, Shanxi Agricultural University(202002-1);Science and Technology Major Special Plan Project “Reveal the Title” of Shanxi Province(202201140601025-2-01)

Abstract:

Wheat leaves tend to fold or curl when exposure to stresses, the dehydration avoidance in morphology can reduce the damage of abiotic stress. At present, the physiological and genetic regulation mechanism associated with leaf curling is not clear in wheat. This study reported a novel rolled leaf mutant (RL1) from the ethyl methyl sulphonate (EMS) mutagenesis cultivar Jinmai 47. The leaves of the mutant RL1 were curled during the growth period, and the primary leaves were slightly curled along axial vein to paraxial plane. Leaf curling was accelerated with the growth until the leaf was tubular. Compared to wild type (WT), plant height, ear length, flag leaf narrowing, and 1000-grain weight were decreased in mutant RL1. Triphenyltetrazolium Chloride (TTC) staining showed that seed vigor of RL1 was low, together with the decreased germination rate by 22%. Additionally, there was no significant differences in chlorophyll content, net photosynthetic rate, transpiration rate, stomatal conductance, and intercellular CO2 concentration between RL1 and WT, while water utilization rate was decreased in RL1 after heading for 10 days. Low temperature, high temperature, and drought led to the leaf rolling in RL1. RL1 showed fewer leaf/lobular veins via paraffin section assay, and the number of abaxial sclerenchyma and adaxial parenchyma cells were reduced in midrib region of RL1. Moreover, the area and counts of vesicular cells between the vascular bundles were significantly reduced in RL1, together with the vesicular cells at the midvein region of leaves compared with WT. Vesicular cells and vascular bundles shrunk and decreased, respectively, resulting in the situation that the entire blade was extremely crimped to the adaxial plane. Genetic analysis demonstrated that the mutant trait was localized on the short arm of chromosome 1D, regulated by a pair of nuclear genes with incomplete dominance and fine mapping analysis further locked the target interval at 9.42 Mb.

Key words: wheat, rolled leaf mutant, cytological analysis, physiological characteristics, genetic analysis

Table 1

Sequence of KASP markers"

标记 Marker SNP F1 F2 R
RLB T/C CCAACCCTAGCTTGTGATCCC TCCAACCCTAGCTTGTGATCCT AGGGGCCCACAAGCCTCCTG
RLC C/G GAATCACGAAAGCACCCTCGC GAATCACGAAAGCACCCTCGG GGCAAACGTGTAGATCGTCTCCC
RLF A/C CGTAACATACAACCATGCCTACCT GTAACATACAACCATGCCTACCG CGTTCAAGGGTTCACATAAGGCTTTTG
RLH A/C GTGGCATGTCAACTCGCGATTTATA GGCATGTCAACTCGCGATTTATC CAACTGAGTGGCATATATATAGTCTGTTATA
RLI A/C CAGAATCACTTCTTGACTACCCCAA GAATCACTTCTTGACTACCCCAC CAGCCTTCTAGAGCCACATTCTAGTA
RLJ T/C GTGCTCCTAGGAAGTAGGAGC ATGTGCTCCTAGGAAGTAGGAGT CCAAAAGCAAGGACGCTTCCAGG
RLK T/C TATTTTGAGACGAAGAGAGAATCGTG ATTTATTTTGAGACGAAGAGAGAATCGTA AGGCGGGTGCTTGCCCTTACAT
RLO C/G TTATACTAAAGCTGCATCAATTAACTTGC TTATACTAAAGCTGCATCAATTAACTTGG GGGCAGTACAACAAACATCAGAAATAAC

Table S1

42 pairs of SSR primers (GB: NY/T 2859-2015)"

引物名称
Primer name
染色体
Chr.
退火温度
Annealing temperature (℃)
引物序列
Primer sequence
(5'-3')
cwm65 1A 65 F: TCATTGGTGTCATCCCTCGTGT; R: GAATAATGCCTTGACCCTGGAC
barc80 1BL 65 F: GCGAATTAGCATCTGCATCTGTTTGAG; R: CGGTCAACCAACTACTGCACAAC
cfd72 1DL 60 F: CTCCTTGGAATCTCACCGAA; R: TCCTTGGGAATATGCCTCCT
gwm294 2AL 55 F: GGATTGGAGTTAAGAGAGAACCG; R: GCAGAGTGATCAATGCCAGA
gwm429 2BS 55 F: TTGTACATTAAGTTCCCATTA; R: TTTAAGGACCTACATGACAC
gwm261 2DS 55 F: CTCCCTGTACGCCTAAGGC; R: CTCGCGCTACTAGCCATTG
gwm155 3AL 55 F: CAATCATTTCCCCCTCCC; R: AATCATTGGAAATCCATATGCC
gwm285 3BS 65 F: ATGACCCTTCTGCCAAACAC; R: ATCGACCGGGATCTAGCC
gdm72 3DS 55 F: TGGTTTTCTCGAGCATTCAA; R: TGCAACGATGAAGACCAGAA
gwm610 4AS 65 F: CTGCCTTCTCCATGGTTTGT; R: AATGGCCAAAGGTTATGAAGG
ksum62 4B 60 F: GGAGAGGATAGGCACAGGAC; R: GAGAGCAGAGGGAGCTATGG
barc91 4DL 55 F: TTCCCATAACGCCGATAGTA; R: GCGTTTAATATTAGCTTCAAGATCAT
gwm304 5AS 55 F: AGGAAACAGAAATATCGCGG; R: AGGACTGTGGGGAATGAATG
gwm67 5BL 60 F: ACCACACAAACAAGGTAAGCG; R: CAACCCTCTTAATTTTGTTGGG
cfd29 5DL 65 F: GGTTGTCAGGCAGGATATTTG; R: TATTGATAGATCAGGGCGCA
gwm459 6AS 55 F: AATTTCAAAAAGGAGAGAGA; R: AACATGTGTTTTTAGCTATC
barc198 6BS 55 F: CGCTGAAAAGAAGTGCCGCATTATGA; R: CGCTGCCTTTTCTGGATTGCTTGTCA
cfd76 6DL 65 F: GCAATTTCACACGCGACTTA; R: CGCTCGACAACATGACACTT
cfa2028 7AS 55 F: TGGGTATGAAAGGCTGAAGG; R: ATCGCGACTATTCAACGCTT
gwm333 7BS 60 F: GCCCGGTCATGTAAAACG; R: TTTCAGTTTGCGTTAAGCTTTG
gwmn437 7DL 55 F: GATCAAGACTTTTGTATCTCTC; R: GATGTCCAACAGTTAGCTTA
wmc312 1AS 55 F: TGTGCCCGCTGGTGCGAAG; R: CCGACGCAGGTGAGCGAAG
barc240 1BL 55 F: AGAGGACGCTGAGAACTTTAGAGAA; R: GCGATCTTTGTAATGCATGGTGAAC
gdm111 1DL 55 F: CACTCACCCCAAACCAAAGT; R: GATGCAATCGGGTCGTTAGT
wmc522 2AS 55 F: AAAAATCTCACGAGTOGGGC; R: CCCGAGCAGGAGCTACAAAT
cfd51 2DS 55 F: GGAGGCTTCTCTATGGGAGG; R: TGCATCTTATCCTGTGCAGC
barc324 3AS 55 F: CCAATTCTGCCCATAGGTGA; R: GAGGAAATAAGATTCAGCCAACTG
barc164 3BS 55 F: TGCAAACTAATCACCAGCGTAA; R: CGCTTTCTAAAACTGTTCGGGATTTCTAA
cfd9 3DL 55 F: TTGCACGCACCTAAACTCTG; R: CAAGTGTGAGCGTCGG
gwm161 3DS 55 F: GATCGAGTGATGGCAGATGG; R: TGTGAATTACTTGGACGTGG
barc170 4AL 55 F: CGCTTGACTTTGAATGGCTGAACA; R: CGCCCACTTTTTACCTAATCCTTTTGAA
gwm495 4BL 55 F: GAGAGCCTCGCGAAATATAGG; R: TGCTTCTGGTGTTCCTTCG
winc720 4DS 55 F: CACCATGGTTGGCAAGAGA; R: CTGGTGATACTGCCGTGACA
gwm186 5AL 55 F: GCAGAGCCTGGTTCAAAAAG; R: CGCCTCTAGCGAGAGCTATG
cfa2155 5AL 55 F: TTTGTTACAACCCAGGGGG; R: TTGTGTGGCGAAAGAAACAG
cfd8 5DS 60 F: ACCACCGTCATGTCACTGAG; R: GTGAAGACGACAAGACGCAA
gwml69 6AL 55 F: ACCACTGCAGAGAACACATACG; R: GTGCTCTGCTCTAAGTGTGGG
barc345 6BL 55 F: CGCCAGACTGCTAGGATAATACTTT; R: GCGGCTAGTGCTCCCTCATAAT
barcl121 6DL 60 F: GCGAGCAAACTGATCCCAAAAAG; R: TATCGGTGAGTACGCCAAAAACA
cfa2123 7AS 60 F: CGGTCTTTGTTTGCTCTAAACC; R: ACCGGCCATCTATGATGAAG
wmc476 7BS 55 F: TACCAACCACACCTGCGAGT; R: CTAGATGAACCTTCGTGCGG
gwm44 7DS 65 F: GTTGAGCTTTTCAGTTCGGC; R: ACTGGCATCCACTGAGCTG

Fig. 1

Phenotypic identification of the wild type (WT) and RL1 mutant a, b: plant phenotypes of WT and RL1 at heading stage and the seeding stage, respectively; Bar: 20 cm, in a; Bar: 10 cm, in b. c: the comparison of curl degree between wild type and RL1 at different stages, wild type on the left and RL1 on the right, Bar: 1 cm."

Fig. 2

Comparing of plant type between RL1 mutant and its wild type counterpart a: stem of WT and RL1, Bar: 20 cm; b and c: the length of spike and internodes of WT and RL1 at mature stage, Bar: 10 cm; *: significant difference at P < 0.05 by t-test; **: significant difference at P < 0.01 by t-test."

Table 2

Comparison of main agronomic traits between wild type and mutant RL1"

性状Trait 种子萌发15 d地上部鲜重
Aboveground fresh weight at 15 days of germination (g)
种子萌发15 d地下部鲜重
Subsurface fresh weight at 15 days of germination (g)
种子萌发15 d
根数目
Root number at 15 days of germination
种子萌发15 d
最大根长
Maximum root length at 15 days of germination (cm)
抽穗期
Heading stage (d)
成熟期
Maturity stage (d)
株高
Plant height
(cm)
旗叶面积
Flag leaf area (cm2)
旗叶长
Flag leaf length (cm)
旗叶宽
Flag leaf width (cm)
穗粒数
Grain number per spike
小穗数
Spikelet number
千粒重
1000-grain weight (g)
WT 0.22±0.01** 0.08±0.01 7±1.3 8.13±0.84 199±1 248±1 78.00±0.28** 24.62±5.14 21.02±2.65 1.51±0.12** 56.75±6.65** 19.25±1.25 52.25±0.91**
RL1 0.14±0.00 0.08±0.01 7±1.5 8.08±1.26 199±1 247±1 67.67±2.19 19.72±2.51 23.4±2.45 1.09±0.02 35.5±1.91 19.00±0.81 33.70±0.21

Fig. 3

TTC staining of mature seeds of wild type and mutant RL1 a: seed embryo staining, Bar: 2 mm; b, c: magnified diagrams of seed embryos, Bar: 200 μm."

Fig. 4

Analysis of photosynthetic parameters and SPAD of wild type and mutant RL1 a: transpiration rate; b: stomata conductance; c: net photosynthetic rate; d: the intercellular CO2 concentration; e: chlorophyll content; f: water use efficiency. **: significant difference at P < 0.01 by t-test."

Fig. 5

Paraffin section analysis of transverse leaf section a: cross cutting diagrams of flag leaves in WT and RL1, Bar: 1000 μm; b, c: magnified diagrams of picture a, Bar: 500 μm; d, e: magnification of figure b and c, respectively, Bar: 200 μm; f: the number and area of bulliform cells between two vein. SC: sclerenchymatous cell; PC: parenchyma cell; BC: bulliform cell; LV: large vein; SV: small vein; ad: adaxial; ab: abaxial. **: significant difference at P < 0.01 by t-test."

Table S2

RL1 and Jinmai 47/ Linfen 5064 reverse F1 "

杂交组合
Cross combination
F1表型及卷曲指数
Phenotype of F1 and leaf rolled index
F1株数
Number of plants in F1
RL1×晋麦47 RL1/Jinmai 47 微卷(抽穗期LRIs: 0.64-0.76) Slightly curl (Heading date LRIs: 0.64-0.76) 17
晋麦47×RL1 Jinmai 47/RL1 微卷(抽穗期LRIs: 0.66-0.78) Slightly curl (Heading date LRIs: 0.66-0.78) 18
RL1×临汾5064 RL1/Linfen 5064 微卷(抽穗期LRIs: 0.61-0.76) Slightly curl (Heading date LRIs: 0.61-0.76) 17
临汾5064×RL1 Linfen 5064/RL1 微卷(抽穗期LRIs: 0.68-0.80) Slightly curl (Heading date LRIs: 0.68-0.80) 18

Table 3

Phenotypic separation statistics of F2 generation population materials"

杂交组合
Cross combination
总株数
Number of plants
平展叶
Spread leaf
轻微卷叶
Slightly coiled leaf
高度卷叶
Highly rolled leaf
理论比例
Ratio of theory
卡方
χ2
RL1/晋麦47 RL1/Jinmai 47 176 45 94 37 1:2:1 0.03
RL1/临汾5064 RL1/Linfen 5064 173 44 95 34 1:2:1 0.01

Fig. 6

Fine mapping of mutant RL1"

Table 4

Homologous genes of rice leaf curl related genes in wheat"

水稻基因
Rice gene
基因注释
Gene annotation
部分同源群
Homoeologous groups
小麦的同源基因
Wheat gene
OsACL1 Os04g33860 2 TraesCS2A01G296600 TraesCS2B01G312800 TraesCS2D01G294500
OsDEK1 Os02g47970 6 TraesCS6A01G275500 TraesCS6B01G302900 TraesCS6D01G255800
OsCFL1 Os02g31140 4 TraesCS4A01G407300 TraesCS4B01G306500 TraesCS4D01G304700
OsMYB103L Os08g05520 7 TraesCS7A01G304500 TraesCS7B01G204800 TraesCS7D01G300000
OsVIL3 Os02g05840 6 TraesCS6A02G123400 TraesCS6B02G151600 TraesCS6D02G113600
OsAGO7 Os03g33650 2 TraesCS2A01G414800 TraesCS2B01G434000 TraesCS2D01G412100
OsCOW1 Os03g06654 4 TraesCS4A01G027500 TraesCS4B01G278300 TraesCS4D01G276600
OsCSLD4 Os12g36890 5 TraesCS5A01G090500 TraesCS5B01G096200 TraesCS5D01G102600
OsHOX32 Os03g43930 5 TraesCS5A01G375800 TraesCS5B01G378000 TraesCS5D01G385300
OsYAB1 Os07g06620 5 TraesCS5A01G371500 TraesCS5B01G373600 TraesCS5D01G380900
OsZHD1 Os09g29130 5 TraesCS5A01G246500 TraesCS5B01G243800 TraesCS5D01G253100
OsPSL1 Os01g19170 1 TraesCS1A01G311100 TraesCS1B01G322500 TraesCS1D01G311000
OsREL1 Os01g64380 2 TraesCS2A01G065100 TraesCS2B01G077300 TraesCS2D01G063200
OsREL2 Os10g41310 1 TraesCS1A01G218200 TraesCS1B01G231600 TraesCS1D01G219800
Osrl14 Os10g40960 1 TraesCS1A01G221200 TraesCS1B01G234500 TraesCS1D01G222800
OsROC5 Os02g45250 6 TraesCS6A01G255800 TraesCS6B01G269700 TraesCS6D01G237000
OsRoc8 Os06g10600 6 TraesCS6A01G324500 TraesCS6B01G354900 TraesCS6D01G304300
OsSLL1 Os09g23200 5 TraesCS5A01G203200 TraesCS5B01G201900 TraesCS5D01G209600
OsSRL2 Os03g19520 4 TraesCS4A01G121600 TraesCS4B01G181700 TraesCS4D01G184300
OsSrl1 Os07g01240 2 TraesCS2A01G256400 TraesCS2B01G286100 TraesCS2D01G347200
OsOFP1 Os01g12690 3 TraesCS3A01G151800 TraesCS3B01G178800 TraesCS3D01G159700
OsMKB3 Os03g52320 4 TraesCS4A01G250600 TraesCS4B01G064000 TraesCS4D01G062900
OsLBD3-7 Os03g57670 5 TraesCS5A01G515300 TraesCS5B01G282700 TraesCS5D01G291300
OsARVL4 Os04g33580 1 TraesCS1A01G036100 TraesCS1B01G231600 TraesCS1D01G219800
OsARF18 Os06g47150 7 TraesCS7A01G446900 TraesCS7B01G346700 TraesCS7D01G436800
OsWOX3A Os12g01120 5 TraesCS5A01G157300 TraesCS5B01G156400 TraesCS5D01G162600
[1] Bogard M, Hourcade D, Piquemal B, Gouache D, Deswartes J C, Throude M, Cohan J P. Marker-based crop model-assisted ideotype design to improve avoidance of abiotic stress in bread wheat. J Exp Bot, 2021, 72: 1085-1103.
doi: 10.1093/jxb/eraa477 pmid: 33068400
[2] Merrium S, Ali Z, Tahir M H N, Habib-Ur-Rahman M, Hakeem S. Leaf rolling dynamics for atmospheric moisture harvesting in wheat plant as an adaptation to arid environments. Environ Sci Pollut Res Int, 2022, 29: 48995-49006.
doi: 10.1007/s11356-022-18936-2
[3] Sirault X R R, Condon A G, Wood J T, Farquhar G D, Rebetzke G J. ‘Rolled-upness’: phenotyping leaf rolling in cereals using computer vision and functional data analysis approaches. Plant Methods, 2015, 11: 52.
doi: 10.1186/s13007-015-0095-1 pmid: 26583042
[4] Zhang X Y, Jia H Y, Li T, Wu J Z, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z Y, Chen C, Carver B F, Yan L L. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science, 2022, 376: 180-183.
doi: 10.1126/science.abm0717
[5] Sun J, Cui X A, Teng S Z, Zhao K N, Wang Y W, Chen Z H, Sun X H, Wu J X, Ai P F, Quick W P, Lu T G, Zhang Z G. HD-ZIP IV gene Roc8 regulates the size of bulliform cells and lignin content in rice. Plant Biotechnol J, 2020, 18: 2559-2572.
doi: 10.1111/pbi.v18.12
[6] Li L, Shi Z Y, Li L, Shen G Z, Wang X Q, An L S, Zhang J L. Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant, 2010, 3: 807-817.
doi: 10.1093/mp/ssq022
[7] Zou L P, Sun X H, Zhang Z G, Liu P, Wu J X, Tian C J, Qiu J L, Lu T G. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol, 2011, 156: 1589-1602.
doi: 10.1104/pp.111.176016
[8] Zhang G H, Xu Q, Zhu X D, Qian Q, Xue H W. SHALLOT- LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell, 2009, 21: 719-735.
doi: 10.1105/tpc.108.061457
[9] 邹良平. 水稻卷叶突变体的细胞形成机制以及OUL1基因的克隆和功能研究. 中国农业科学院博士学位论文,北京, 2012.
Zou L P. Cytological Mechanism of Rolled-feaf Formation and Functional Analysis of OUL1 Controlling Leaf Roll in Rice. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2012. (in Chinese with English abstract)
[10] Wu R H, Li S B, He S, Wassmann F, Yu C H, Qin G J, Schreiber L, Qu L J, Gu H Y. CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell, 2011, 23: 3392-3411.
doi: 10.1105/tpc.111.088625
[11] Juarez M T, Twigg R W, Timmermans M C P. Specification of adaxial cell fate during maize leaf development. Development, 2004, 131: 4533-4544.
doi: 10.1242/dev.01328 pmid: 15342478
[12] Canales C, Grigg S, Tsiantis M. The formation and patterning of leaves: recent advances. Planta, 2005, 221: 752-756.
pmid: 15909148
[13] Zhu Z, Wang J Y, Li C N, Li L, Mao X G, Hu G, Wang J P, Chang J Z, Jing R L. A transcription factor TaMYB5 modulates leaf rolling in wheat. Front Plant Sci, 2022, 13: 897623.
doi: 10.3389/fpls.2022.897623
[14] Verma A, Niranjana M, Jha S K, Mallick N, Agarwal P, Vinod. QTL detection and putative candidate gene prediction for leaf rolling under moisture stress condition in wheat. Sci Rep, 2020, 10: 18696.
doi: 10.1038/s41598-020-75703-4 pmid: 33122772
[15] Yang X, Wang J Y, Mao X G, Li C N, Li L, Xue Y H, He L H, Jing R L. A locus controlling leaf rolling degree in wheat under drought stress identified by bulked segregant analysis. Plants, 2022, 11: 2076.
doi: 10.3390/plants11162076
[16] Bian R L, Liu N, Xu Y Z, Su Z Q, Chai L L, Bernardo A, Amand P St, Fritz A, Zhang G R, Rupp J, Akhunov E, Jordan K W, Bai G H. Quantitative trait loci for rolled leaf in a wheat EMS mutant from Jagger. Theor Appl Genet, 2023, 136: 52.
doi: 10.1007/s00122-023-04284-3
[17] 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析. 作物学报, 2021, 47: 714-727.
doi: 10.3724/SP.J.1006.2021.01048
Zhao J J, Qiao L, Wu B B, Ge C, Qiao L Y, Zhang S W, Yan S X, Zheng X W, Zheng J. Seedling root characteristics and drought resistance of wheat in Shanxi province. Acta Agron Sin, 2021, 47: 714-727. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01048
[18] 李浩然, 李慧玲, 王红光, 李东晓, 李瑞奇, 李雁鸣. 冬小麦叶面积测算方法的再探讨. 麦类作物学报, 2018, 38: 455-459.
Li H R, Li H L, Wang H G, Li X D, Li R Q, Li Y M. Further study on the method of leaf area calculation in winter wheat. J Triticeae Crops, 2018, 38: 455-459. (in Chinese with English abstract)
[19] Shi Z Y, Wang J, Wan X S, Shen G Z, Wang X Q, Zhang J L. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta, 2007, 226: 99-108.
doi: 10.1007/s00425-006-0472-0
[20] Selim D A H, Zayed M, Ali M M E, Eldesouky H S, Bonfill M, El-Tahan A M, Ibrahim O M, El-Saadony M T, El-Tarabily K A, AbuQamar S F, Elokkiah S. Germination, physio-anatomical behavior, and productivity of wheat plants irrigated with magnetically treated seawater. Front Plant Sci, 2022, 13: 923872.
doi: 10.3389/fpls.2022.923872
[21] 张礼霞, 刘合芹, 于新, 王林友, 范宏环, 金庆生, 王建军. 水稻卷叶突变体rl15(t)的生理学分析及基因定位. 中国农业科学, 2014, 47: 2881-2888.
doi: 10.3864/j.issn.0578-1752.2014.14.018
Zhang L X, Liu H Q, Yu X, Wang L Y, Fan H H, Jin Q S, Wang J J. Molecular mapping and physiological characterization of a novel mutant rl15(t) in rice. Sci Agric Sin, 2014, 47: 2881-2888. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2014.14.018
[22] 严长杰, 严松, 张正球, 梁国华, 陆驹飞, 顾铭洪. 一个新的水稻卷叶突变体rl9(t)的遗传分析和基因定位. 科学通报, 2005, 50: 2757-2762.
Yan C J, Yan S, Zhang Z Q, Liang G H, Lu J F, Gu M H. Genetic analysis and gene fine mapping for a rice novel mutant rl9(t) with rolling leaf character. Sci Bull, 2005, 50: 2757-2762. (in Chinese with English abstract)
[23] Duan P G, Ni S, Wang J M, Zhang B L, Xu R, Wang Y X, Chen H Q, Zhu X D, Li Y H. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2015, 2: 15203.
doi: 10.1038/nplants.2015.203
[24] Li Y Y, Shen A, Xiong W, Sun Q L, Luo Q, Song T, Li Z L, Luan W J. Overexpression of OsHox32 results in pleiotropic effects on plant type architecture and leaf development in rice. Rice, 2016, 9: 46.
doi: 10.1186/s12284-016-0118-1
[25] Liu X F, Li M, Liu K, Tang D, Sun M F, Li Y F, Shen Y, Du G J, Cheng Z K. Semi-Rolled Leaf2 modulates rice leaf rolling by regulating abaxial side cell differentiation. J Exp Bot, 2016, 67: 2139-2150.
doi: 10.1093/jxb/erw029
[26] Shimano S, Hibara K I, Furuya T, Arimura S I, Tsukaya H, Itoh J I. Conserved functional control, but distinct regulation, of cell proliferation in rice and Arabidopsis leaves revealed by comparative analysis of GRF-INTERACTING FACTOR 1 orthologs. Development, 2018, 145: 159624.
[27] Jane W N, Chiang S H T. Morphology and development of bulliform cells in Arundo formosana Hack. Taiwania Int J Life Sci, 1991, 36: 85-97.
[28] Hibara K L, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J L, Nagato Y. The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice. Dev Biol, 2009, 334: 345-354.
doi: 10.1016/j.ydbio.2009.07.042
[29] Xu Y, Wang Y H, Long Q Z, Huang J X, Wang Y L, Zhou K N, Zheng M, Sun J, Chen H, Chen S H, Jiang L, Wang C M, Wan J M. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta, 2014, 239: 803-816.
doi: 10.1007/s00425-013-2009-7
[30] Li C, Zou X H, Zhang C Y, Shao Q H, Liu J, Liu B, Li H Y, Zhao T. OsLBD3-7 overexpression induced adaxially rolled leaves in rice. PLoS One, 2016, 11: e0156413.
doi: 10.1371/journal.pone.0156413
[31] Yang C H, Li D Y, Liu X, Ji C J, Hao L L, Zhao X F, Li X B, Chen C Y, Cheng Z K, Zhu L H. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC Plant Biol, 2014, 14: 158.
doi: 10.1186/1471-2229-14-158
[32] Kinoshita T. Gene analysis and linkage map. Tokyo: Japan Scientific Societies Press, 1984. pp 187-274.
[33] Khush G S, Kinoshita T. Rice karyotype, marker genes, and linkage groups. In: Khush G S, Toenniessen G H, eds. Rice Biology. Wallingford: CAB International and International Rice Research Institute, 1991. pp 83-108.
[34] Wang J, Hu J, Qian Q, Xue H W. LC2 and OsVIL2 promote rice flowering by photoperoid-induced epigenetic silencing of OsLF. Mol Plant, 2013, 6: 514-527.
doi: 10.1093/mp/sss096 pmid: 22973062
[35] Woo Y M, Park H J, Su'udi M, Yang J I, Park J J, Back K, Park Y M, An G. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol, 2007, 65: 125-136.
doi: 10.1007/s11103-007-9203-6
[36] Hu J, Zhu L, Zeng D L, Gao Z Y, Guo L B, Fang Y X, Zhang G Z, Dong G J, Yan M X, Liu J, Qian Q. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol, 2010, 73: 283-292.
doi: 10.1007/s11103-010-9614-7
[37] Dai M Q, Zhao Y, Ma Q, Hu Y F, Hedden P, Zhang Q F, Zhou D X. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol, 2007, 144: 121-133.
[38] Zhang G H, Hou X, Wang L, Xu J, Chen J, Fu X, Shen N W, Nian J Q, Jiang Z Z, Hu J, Zhu L, Rao Y C, Shi Y F, Ren D Y, Dong G J, Gao Z Y, Guo L B, Qian Q, Luan S. PHOTO- SENSITIVE LEAF ROLLING 1 encodes a polygalacturonase that modifies cell wall structure and drought tolerance in rice. New Phytol, 2021, 229: 890-901.
doi: 10.1111/nph.v229.2
[39] Chen Q L, Xie Q J, Gao J, Wang W Y, Sun B, Liu B H, Zhu H T, Peng H F, Zhao H B, Liu C H, Wang J, Zhang J L, Zhang G Q, Zhang Z M. Characterization of Rolled and Erect Leaf 1 in regulating leave morphology in rice. J Exp Bot, 2015, 66: 6047-6058.
doi: 10.1093/jxb/erv319
[40] Yang S Q, Li W Q, Miao H, Gan P F, Qiao L, Chang Y L, Shi C H, Chen K M. REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice, 2016, 9: 37.
doi: 10.1186/s12284-016-0105-6
[41] Fang L K, Zhao F M, Cong Y F, Sang X C, Du Q, Wang D Z, Li Y F, Ling Y H, Yang Z L, He G H. Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnol J, 2012, 10: 524-532.
doi: 10.1111/pbi.2012.10.issue-5
[42] Xiang J J, Zhang G H, Qian Q, Xue H W. Semi-rolled leaf1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol, 2012, 159: 1488-1500.
doi: 10.1104/pp.112.199968
[43] Xiao Y H, Liu D P, Zhang G X, Tong H N, Chu C C. Brassinosteroids regulate OFP1, a DLT interacting protein, to modulate plant architecture and grain morphology in rice. Front Plant Sci, 2017, 8: 1698.
doi: 10.3389/fpls.2017.01698 pmid: 29021808
[44] Wang L, Xu J, Nian J Q, Shen N W, Lai K K, Hu J, Zeng D L, Ge C W, Fang Y X, Zhu L, Qian Q, Zhang G G. Characterization and fine mapping of the rice gene OsARVL4 regulating leaf morphology and leaf vein development. Plant Growth Regul, 2016, 78: 345-356.
doi: 10.1007/s10725-015-0097-z
[45] Huang J, Li Z Y, Zhao D Z. Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice. Sci Rep, 2016, 6: 29938.
doi: 10.1038/srep29938 pmid: 27444058
[46] Cho S H, Yoo S C, Zhang H T, Pandeya D, Koh H J, Wang J Y, Kim G T, Paek N C. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. New Phytol, 2013, 198: 1071-1084.
doi: 10.1111/nph.2013.198.issue-4
[1] LI Yu-Jia, XU Hao, YU Shi-Nan, TANG Jian-Wei, LI Qiao-Yun, GAO Yan, ZHENG Ji-Zhou, DONG Chun-Hao, YUAN Yu-Hao, ZHENG Tian-Cun, YIN Gui-Hong. Genetic analysis of elite stripe rust resistance genes of founder parent Zhou8425B in its derived varieties [J]. Acta Agronomica Sinica, 2024, 50(1): 16-31.
[2] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[3] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[4] SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143.
[5] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[6] LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224.
[7] LIU Qiong, YANG Hong-Kun, CHEN Yan-Qi, WU Dong-Ming, HUANG Xiu-Lan, FAN Gao-Qiong. Effect of nitrogen application rate on grain quality, wine quality and volatile flavor compounds of waxy and no-waxy wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2240-2258.
[8] LIN Fen-Fang, CHEN Xing-Yu, ZHOU Wei-Xun, WANG Qian, ZHANG Dong-Yan. Hyperspectral remote sensing detection of Fusarium head blight in wheat based on the stacked sparse auto-encoder algorithm [J]. Acta Agronomica Sinica, 2023, 49(8): 2275-2287.
[9] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[10] CHEN Li, WANG Jing, QIU Xiao, SUN Hai-Lian, ZHANG Wen-Hao, WANG Tian-Zuo. Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses [J]. Acta Agronomica Sinica, 2023, 49(8): 2122-2132.
[11] DING Hong-Yan, FENG Xiao-Xi, WANG Bai-Yu, ZHANG Ji-Sen. Evolution and relative expression pattern of LRRII-RLK gene family in sugarcane Saccharum spontaneum [J]. Acta Agronomica Sinica, 2023, 49(7): 1769-1784.
[12] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[13] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[14] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[15] LI Ling-Yu, ZHOU Qi-Rui, LI Yang, ZHANG An-Min, WANG Bei-Bei, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Transcriptome analysis of exogenous 6-BA in regulating young spike development of wheat after low temperature at booting stage [J]. Acta Agronomica Sinica, 2023, 49(7): 1808-1817.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .