Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Physicochemical properties of wheat starch and the molecular mechanisms of its synthesis

KANG Guo-Zhang, WANG Yong-Hua, GUO Tian-Cai*   

  1. The National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, Henan, China
  • Received:2024-03-11 Revised:2024-07-25 Accepted:2024-07-25 Online:2024-07-30 Published:2024-07-30
  • Supported by:
    The study was supported by the National Natural Science Foundation of China (32171924, 31871550, U1704110, 31571575, 31571575, 31171471, and 30871472).

Abstract:

Starch is the most important component of wheat grain, determining grain weight and significantly influencing the quality of noodles and steamed buns, the primary cooking pasta products in China. Therefore, it is crucial to deeply explore the physicochemical properties of wheat starch and the molecular mechanisms underlying its synthesis. In common wheat, amylose and amylopectin constitute 17%–34% and 66%–83% of the total starch content, respectively. These two components exist in two particle shapes: A-type ( > 9.8 μm) and B-type ( < 9.8 μm). Their physicochemical properties (content, amylose/amylopectin ratio, swelling, gelatinization, etc.) significantly affect the processing quality of cooked pasta products such as noodles and steamed buns. The wheat genome contains 26 genes that encode subunits or isoenzymes of starch synthesis enzymes, with their expression levels being heavily regulated at transcriptional, post-transcriptional, and post-translational levels. This review examines the physicochemical properties of wheat starch, the relationships between these properties and the processing quality of noodles and steamed buns, the functional genes involved in starch synthesis, and their regulatory factors at transcriptional, post-transcriptionaland translational levels. Finally, future research directions for wheat starch are discussed.

Key words: Triticum aestivum L., starch, physicochemical properties, molecular mechanisms

[1] Gupta P K, Mir R R, Mohan A, Kumar J. Wheat genomics: present status and future prospects. Int J Plant Genomics, 2008, 2008: 896451.

[2] 姚大年, 李保云, 朱金宝, 梁荣奇, 刘广田. 小麦品种主要淀粉性状及面条品质预测指标的研究. 中国农业科学, 1999, 32: 84–88.

Yao D N, Li B Y, Zhu J B, Liang S Q, Liu G T. Study on main starch properties and predictive indexes of noodle quality in common wheat (Triticum aestivum). Chin Agric Sci, 1999, 32: 84–88 (in Chinese with English abstract).

[3] 许为钢. 藏粮于技,中国的小麦要满足中国人的胃!(2023-03-11). https://www.sohu.com/a/652674518_121172850.

Xu W G. Grain yields should be stored in science and technology, and Chinese wheat quality should satisfy the stomach of the Chinese people. (2023-03-11). https://www.sohu.com/a/652674518_121172850.

[4] 何照范. 粮油籽粒品质及其分析技术北京: 中国农业出版社, 1985. pp 290294.

He Z F. Grain and oil grain quality and analysis techniques. Beijing: China Agriculture Press. 1985. pp 290294 (in Chinese).

[5] 张学林, 郭天财, 朱云集, 李志强, 王晨阳, 马冬云, 彭羽. 河南省不同纬度生态环境对三种筋型小麦淀粉糊化特性的影响. 生态学报, 2004, 24: 2050–2055.

Zhang X, Guo T, Zhu Y, Li Z, Wang C, Ma D, Peng Y. Environmental effects of different latitudes on starch paste property of three types of gluten wheat in Henan Province. Acta Ecol Sin, 2004, 24: 2050–2055 (in Chinese with English abstract).

[6] Brenchley R, Spannagl M, Pfeifer M, Barker G L A, D’Amore R, Allen A M, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie W R, Hall A, Mayer K F X, Edwards K J, Bevan M W, Hall N. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 2012, 491: 705–710.

[7] 国家农作物品种审定委员会. 主要农作物品种审定标准(国家级). 种业导刊, 2017, (11): 5–11.

National Crop Variety Approval Committee. Main crop variety approval standards (national level). J Seed Indust Guide, 2017, (11): 5–11.

[8] Thitisaksakul M, Jiménez R C, Arias M C, Beckles D M. Effects of environmental factors on cereal starch biosynthesis and composition. J Cereal Sci, 2012, 56: 67–80.

[9] Bertoft E. Understanding starch structure: recent progress. Agronomy, 2017, 7: 56.

[10] Kiseleva V I, Tester R F, Wasserman L A, Krivandin A V, Popov A A, Yuryev V P. Influence of growth temperature on the structure and thermodynamic parameters of barley starches. Carbohyd Polym, 2003, 51: 407–415.

[11] 张燕, 王传仁, 李鸽子, 王鹏飞, 王永华, 郭天财, 康国章. 小麦品种鑫华麦818籽粒淀粉粒结构的动态变化及粒度分布. 电子显微学报, 2020, 39: 414–418.

Zhang Y, Wang C, Li G, Wang P, Wang Y, Guo T, Kang G. Dynamic changes and size distribution of starch granules in the grains of Xinhuamai 818 wheat cultivar. J Chin Elec Micros Soc, 2020, 39: 414–418 (in Chinese with English abstract).

[12] 戴忠民, 王振林, 张敏, 李文阳, 闫素辉, 蔡瑞国, 尹燕枰. 不同品质类型小麦籽粒淀粉粒度的分布特征. 作物学报, 2008, 34: 465470.

Dai Z M, Wang Z L, Zhang M, Li W Y, Yan S H, Cai R G, Yin Y P. Starch granule size distribution in grains of strong and weak gluten wheat cultivars. Acta Agron Sin, 2008, 34: 465470 (in Chinese with English abstract).

[13] 高欣, 郭雷, 单宝雪, 肖延军, 刘秀坤, 李豪圣, 刘建军, 赵振东, 曹新有. 淀粉颗粒类型及其比例在小麦品质特性形成与改良中的作用. 作物学报, 2023, 49: 1447–1454.

Gao X, Guo L, Shan B X, Xiao Y J, Liu X K, Li H S, Liu J J, Zhao Z D, Cao X Y. Types and ratios of starch granules in grains and their roles in the formation and improvement of wheat quality properties. Acta Agron Sin, 2023, 49: 1447–1454 (in Chinese with English abstract).

[14] 田益华, 张传辉, 蔡剑, 周琴, 姜东, 戴廷波, 荆奇, 曹卫星. 小麦籽粒A-型和B-型淀粉粒的理化特性. 作物学报, 2009, 35: 1755–1758.

Tian Y H, Zhang C H, Cai J, Zhou Q, Jiang D, Dai T B, Jing Q, Cao W X. Physico-chemical properties of A- and B-type starch granules in wheat. Acta Agron Sin, 2009, 35: 1755–1758 (in Chinese with English abstract).

[15] Ao ZH, Jane JL. Characterization and modeling of the A- and B-granule starches of wheat, triticale, and barley. Carbohyd Polym, 2007, 67: 46–55.

[16] Fu B X, Kovace M I P, Wang C. A simple wheat flour swelling test. Cereal Chem, 1998, 75: 566–567.

[17] 梁灵, 魏益民, 张国权, 师俊玲, 郭波莉. 小麦膨胀体积和直链淀粉含量的研究. 麦类作物学报, 2003, 23: 34–36.

Liang L, Wei Y M, Zhang G Q, Shi J L, Guo B L. Study on the starch swelling volume and amylose content of wheat. J Triticeae Crops, 2003, 23: 34–36 (in Chinese with English abstract).

[18] 王海萍, 师凤华, 唐朝晖, 李保云, 刘广田. 一些小麦品种的淀粉特性分析. 麦类作物学报, 2007, 27: 479–482.

Wang H P, Shi F H, Tang Z H, Li B Y, Liu G T. Analysis on starch properties in some wheat cultivars. J Triticeae Crops, 2007, 27: 479–482 (in Chinese with English abstract).

[19] 姚大年, 刘广田. 小麦品种面粉黏度性状及其与面条品质的相关性研究. 中国农业大学学报, 1997, 2(3): 52–68.

Yao D N, Liu G T. Studies on the paste viscosity traits and their relationships with noodle quality in wheat flours. J Chin Agr Univ, 1997, 2(3): 52–68 (in Chinese with English abstract).

[20] Li C. Recent progress in understanding starch gelatinization: an important property determining food quality. Carbohyd Polym, 2022, 293: 119735.

[21] 王姗, 胡润雨, 于士男, 许豪, 唐建卫, 李巧云, 焦竹青, 殷贵鸿. 小麦淀粉RVA特性的QTL定位及效应分析. 核农学报, 2023, 37: 1957–1967.

Wang S, Hu R, Yu S, Xu H, Tang J, Li Q, Jiao Z, Yin G. QTL mapping and effect analysis of RVA characteristics of wheat starch. J Nucl Agric Sci, 2023, 37: 1957–1967 (in Chinese with English abstract).

[22] Dai Z, Liu D, Qin S, Wu R, Li Y, Liu J, Zhu Y, Chen G. Effects of irrigation schemes on the components and physicochemical properties of starch in waxy wheat lines. Plant Soil Environ, 2021, 67: 524–532

[23] Yun S H, Quail K, Moss R. Physicochemical properties of Australian wheat flour for white salted noodles. J Cereal Sci, 1996, 23: 181–189.

[24] 张晓, 高德荣, 吕国锋, 吴宏亚, 张伯桥, 李曼. 糯小麦与其他作物淀粉特性的比较研究. 中国农业科学, 2013, 46: 2183–2190.

Zhang X, Gao D R, Lv G F, Wu H Y, Zhang B Q, Li M. Comparison of the starch’s properties of waxy wheat and other crops. Sci Agric Sin, 2013, 46: 2183–2190 (in Chinese with English abstract).

[25] 李春燕, 封超年, 王亚雷, 张容, 郭文善, 朱新开, 彭永欣. 不同小麦品种支链淀粉链长分配及其与淀粉理化特性的关系. 作物学报, 2007, 33: 12401245.

Li C Y, Feng C N, Wang Y L, Zhang R, Guo W S, Zhu X K, Peng Y X. Chain length distribution of debranched amylopectin and its relationship with physicochemical properties of starch in different wheat cultivars. Acta Agron Sin, 2007, 33: 12401245 (in Chinese with English abstract).

[26] 宋健民, 刘爱峰, 李豪圣, 戴双, 刘建军, 赵振东, 刘广田. 小麦籽粒淀粉理化特性与面条品质关系研究. 中国农业科学, 2008, 41: 272–279.

Song J M, Liu A F, Li H S, Dai S, Liu J J, Zhao Z D, Liu G T. Relationship between starch physiochemical properties of wheat grain and noodle quality. Sci Agric Sin, 2008, 41: 272–279 (in Chinese with English abstract).

[27] Toyoka H. Japanese noodle qualities II Starch components. Cereal Chem, 2010, 66: 387–391.

[28] 李永强, 翟红梅, 田纪春. 蛋白质和淀粉含量对小麦面团流变学特性的影响. 作物学报, 2007, 33: 937941.

Li Y Q, Zhai H M, Tian J C. Effect of protein and starch contents on wheat dough rheological properties. Acta Agron Sin, 2007, 33: 937941 (in Chinese with English abstract).

[29] Hung P V, Maeda T, Morita N. Waxy and high-amylose wheat starches and flours-characteristics, functionality and application. Trends Food Sci Tech, 2006, 17: 448–456.

[30] 冯文翰, 张晓科, 魏益民. 小麦粉理化特性与面条及馒头质量的关系. 粮食加工, 2023, 48(3): 1–4.

Feng W H, Zhang X K, Wei Y M. The relationship between physico-chemical characteristics of wheat flour and quality properties of noodle and steamed bread. Grain Process, 2023, 48(3): 1–4 (in Chinese with English abstract).

[31] 刘锐, 魏益民, 邢亚楠, 张波,张影全. 小麦淀粉与面条质量关系的研究进展. 麦类作物学报, 2013, 33: 1058–1063.

Liu R, Wei Y M, Xing Y N, Zhang B, Zhang Y Q. Review on the relationship between starch and noodle quality in wheat. J Triticeae Crops, 2013, 33: 1058–1063 (in Chinese with English abstract).

[32] 刘建军,何中虎,赵振东,刘爱峰, 宋建民, Pena R J. 小麦品质性状与干白面条品质参数关系的研究. 作物学报, 2002, 28: 738–742.

Liu J J, He Z H, Zhao Z D, Liu A F, Song J M, Pean R J. Investigation on relationship between wheat quality traits and quality parameters of dry white Chinese noodles. Acta Agron Sin, 2002, 28: 738–742 (in Chinese with English abstract).

[33] Seib P. Reduced-amylose wheats and Asian noodles. Cereal Food World, 2000, 45: 504–512.

[34] Maningat C C, Seib P A. Understanding the physicochemical and functional properties of wheat starch in various foods. Cereal Chem, 2010, 87: 305–314.

[35] 王美芳, 赵石磊, 雷振生, 吴政卿, 晁岳恩, 徐福新, 杨攀, 杨会民, 刘加平, 李巍. 小麦蛋白淀粉品质指标与面包品质关系的研究. 核农学报, 2013, 27: 792–799.

Wang M F, Zhao S L, Lei Z S, Wu Z Q, Chao Y E, Xu F X, Yang P, Yang H M, Liu J P, Li W. The relationship between protein quality and starch pasting parameters and bread baking quality in common wheat. J Nuclear Agric Sci, 2013, 27: 792–799 (in Chinese with English abstract).

[36] 杨雪峰, 宋维富, 刘东军, 赵丽娟, 宋庆杰, 张春利, 辛文利, 肖志敏, 白光宇, 孙雪松, 仇琳, 王晓楠. 面包面条兼用型强筋小麦主要品质性状分析与评价. 麦类作物学报, 2023, 43: 738–743.

Yang X F, Song W F, Liu D J, Zhao L J, Song Q J, Zhang C L, Xin W L, Xiao Z M, Bai G Y, Sun X S, Qiu L, Wang X N. Analysis and evaluation on major quality traits of strong gluten wheat for bread and noodle making. J Triticeae Crops, 2023, 43: 738–743 (in Chinese with English abstract).

[37] Jeon J, Ryoo N, Hahn T, Walia, H, Nakamura Y. Starch biosynthesis in cereal endosperm. Plant Physiol Biochem, 2010, 48: 383–392.

[38] Tetlow I J, Beisel K G, Cameron S, Makhmoudova A, Liu F, Bresolin N S, Wait R, Morell M K, Emes M J. Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol, 2008, 146: 1878–1891.

[39] Mehrpouyan S, Menon U, Tetlow I J, Emes M J. Protein phosphorylation regulates maize endosperm starch synthase IIa activity and protein-protein interactions. Plant J, 2021, 105: 1098–1112.

[40] Ying Y, Xu F, Zhang Z, Tappiban P, Bao J. Dynamic change in starch biosynthetic enzymes complexes during grain-filling stages in BEIIb active and deficient rice. Int J Mol Sci, 2022, 23: 10714.

[41] Ohdan T, Francisco P B, Sawada J T, Hirose T, Terao T, Satoh H, Nakamura Y. Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot, 2005, 56: 3229–3244.

[42] Yan H B, Pan X X, Jiang H W, Wu G J. Comparison of the starch synthesis genes between maize and rice: copies, chromosome location and expression divergence. Theor Appl Genet, 2009, 119: 815–825.

[43] Kang G Z, Xu W, Liu G Q, Peng X Q, Guo T C. Comprehensive analysis of the transcription of starch synthesis genes and the transcription factor RSR1 in wheat (Triticum aestivum L.) endosperm. Genome, 2013, 56: 115–122.

[44] Kang G Z, Zheng B B, Shen B Q, Peng H F, Guo T C. A novel Ta.AGP.S.1b transcript in Chinese common wheat. CR Biol, 2010, 333: 716–724.

[45] Kang G, Li S, Zhang M, Peng H, Wang C, Zhu Y, Guo T. Molecular cloning and expression analysis of starch branching enzyme III gene from common wheat. Biochem Genet, 2013, 51: 377–386.

[46] Kang G Z, Liu G Q, Xu W, Zhu Y J, Wang C Y, Ling H Q, Guo T C. Identification of the isoamylase 3 gene in common wheat and its expression profile during the grain-filling period. Genet Mol Res, 2013, 12: 4264–4275.

[47] Kang G, Liu G, Peng X, Wei L, Wang C, Zhu Y, Ma Y, Jiang Y, Guo T. Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene. Plant Physiol Biochem, 2013, 73: 93–98.

[48] 康国章, 孟琰珺, 王鹏飞, 葛强, 郭天财, 刘国芹, 杨喜堂, 彭燕燕. 一种鉴定小麦千粒重性状的SNP位点、CAPS分子标记引物对及其应用. 中国专利: ZL202210269669.5. 2022-11-18.

Kang G Z, Meng Y J, Wang P F, Ge Q, Guo T C, Liu G Q, Yang X T, Peng Y Y. A SNP locus and CAPS molecular marker primer pair for identifying wheat thousand grain weight trait and its application. Chinese patent: ZL202210269669.5. 2022-11-18 (in Chinese).

[49] Tetlow I J, Emes M J. Starch biosynthesis in the developing endosperms of grasses and cereals. Agronomy, 2017, 7: 81.

[50] Huang L, Tan H, Zhang C, Li Q, Liu Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade. Plant Comm, 2021, 2: 100237.

[51] Yan H, Zhang W, Wang Y, Jin J, Xu H, Fu Y, Shan Z, Wang X, Teng X, Li X, Wang Y, Hu X, Zhang W, Zhu C, Zhang X, Zhang Y, Wang R, Zhang J, Cai Y, You X, Chen J, Ge X, Wang L, Xu J, Jiang L, Liu S, Lei C, Zhang X, Wang H, Ren Y, Wan J. Rice LIKE EARLY STARVATION1 cooperates with FLOURY ENDOSPERM6 to modulate starch biosynthesis and endosperm development. Plant Cell, 2024, 36: 1892–1912.

[52] Liu G, Wu Y, Xu M, Gao T, Wang P, Wang L, Guo T, Kang G. Virus-induced gene silencing identifies an important role of the TaRSR1 transcription factor in starch synthesis in bread wheat. Int J Mol Sci, 2016, 17: 1557.

[53] 董洁, 李鸽子, 韩巧霞, 谢迎新, 王永华, 冯伟, 马冬云, 王晨阳, 郭天财, 康国章. 小麦TaAGPL1基因上游转录因子TabHLH39的分离及其功能研究. 中国农业科技导报, 2020, 22(10): 18–26.

Dong J, Li G Z, Han Q X, Xie Y X, Wang Y H, Feng W, Ma D Y, Wang C Y, Guo T C, Kang G Z. Isolation and function of TabHLH39 transcription factor regulating expression of the TaAGPL1 gene in bread wheat. J Agric Sci Tech, 2020, 22(10): 18–26 (in Chinese with English abstract).

[54] Guo D, Hou Q, Zhang R, Lou H, Li Y, Zhang Y, You M, Xie C, Liang R, Li B. Over-expression TaSPA-B reduces prolamin and starch accumulation in wheat (Triticum aestivum L.) grains. Int J Mol Sci, 2020, 21: 3257.

[55] Liu Y, Hou J, Wang X, Li T, Uzma M, Hao C, Zhang X. The NAC transcription factor NAC019-A1 is a negative regulator of starch synthesis in wheat developing endosperm. J Exp Bot, 2020, 71: 5794–5807.

[56] Gao Y, An K, Guo W, Chen Y, Zhang R, Zhang X, Chang S, Rossi V, Jin F, Cao X, Xin M, Peng H, Hu Z, Guo W, Du J, Ni Z, Sun Q, Yao Y. The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. Plant Cell, 2021, 33: 603–622.

[57] Song Y, Luo G, Shen L, Yu K, Yang W, Li X, Sun J, Zhan K, Cui D, Liu D, Zhang A. TubZIP28, a novel bZIP family transcription factor from Triticum urartu, and TabZIP28, its homolog from Triticum aestivum enhance starch synthesis in wheat. New Phytol, 2020, 226: 1384–1398.

[58] Li J, Xie L, Tian X, Liu S, Xu D, Jin H, Song J, Dong Y, Zhao D, Li G, Li Y, Zhang Y, Zhang Y, Xia X, He Z, Cao S. TaNAC100 acts as an integrator of seed protein and starch synthesis exerting pleiotropic effects on agronomic traits in wheat. Plant J, 2021, 108: 829–840.

[59] Xie L, Liu S, Zhang Y, Tian W, Xu D, Li J, Luo X, Li L, Bian Y, Li F, Hao Y, He Z, Xia X, Song X, Cao S. Efficient proteome-wide identification of transcription factors targeting Glu-1: a case study for functional validation of TaB3-2A1 in wheat. Plant Biotechnol J, 2023, 21: 1952–196.

[60] Yuan S S, Fan P, Zhang D D, Liu H T, Wang P F, Guo T C, Wang Y H, Kang G Z. JAZ1 gene regulates starch biosynthesis and changes physicochemical properties in wheat grains. Food Biosci, 2023, 56: 103259.

[61] 康国章, 孟琰珺, 葛强, 郭天财, 夏国军, 程明月, 彭佩佩. 鉴定小麦单倍型和/或千粒重性状的分子标记组合、引物对、试剂盒及其应用. 中国专利: 202211253776.5, 2023-03-01.

Kagn G Z, Meng Y J, Ge Q, Guo T C, Xia G J, Cheng M Y, Peng P P. Molecular marker combinations, primer pairs, reagent kits and their applications for identifying wheat haplotypes and/or thousand grain weight traits. Chinese patent: 202211253776.5, 2023-03-01 (in Chinese).

[62] Liu Y, Xi W, Wang X, Li H, Liu H, Li T, Hou J, Liu X, Hao C, Zhang X. TabHLH95-TaNF-YB1 module promotes grain starch synthesis in bread wheat. J Genet Genomics, 2023, 50: 883–894.

[63] 胡墨明. 小麦淀粉合成调控因子miR1121的分离及标记开发. 河南农业大学硕士学位论文, 河南郑州, 2024.

Hu M M. Isolation and molecular marker development of miR1121, a regulatory factor for wheat starch synthesis. MS thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2024 (in Chinese with English abstract).

[64] Chen G X, Zhen S M, Liu Y L, Yan X, Zhang M, Yan Y M. In vivo phosphoproteome characterization reveals key starch granule-binding phosphoproteins involved in wheat water-deficit response. BMC Plant Biol, 2017, 17: 168.

[65] Kumar P, Madhawan A, Sharma A, Sharma V, Das D, Parveen A, Fandade V, Sharma D, Roy J. A sucrose non-fermenting-1-related protein kinase 1 gene from wheat, TaSnRK1α regulates starch biosynthesis by modulating AGPase activity. Plant Physiol Biochem, 2024, 207: 108407.

[66] 康国章, 付一涵, 杜长青, 汪金玺, 刘国芹, 葛强, 李鸽子, 王鹏飞, 韩巧霞, 虞波. 一种检测小麦粒重基因的分子标记及其应用. 中国专利: 2023114709101, 2023-11-07.

Kang G Z, Fu Y H, Du C Q, Wang J X, Liu G Q, Ge Q, Li G Z, Wang P F, Han Q X, Yu B. A molecular marker detecting wheat grain weight genes and its application. Chinese patent: 2023114709101, 2023-11-07 (in Chinese).

[67] Geigenberger P. Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiol, 2011, 155: 1566–1577

[1] CHEN Juan, YANG Ting-Ting, YAN Su-Hui, YONG Yu-Dong, ZHANG Shi-Ya, LI Wen-Yang. Effects of waterlogging at jointing stage on starch particle size distribution and pasting properties of soft wheat [J]. Acta Agronomica Sinica, 2024, 50(7): 1877-1884.
[2] ZHAO Na, LIU Yu-Xi, ZHANG Chao-Shu, SHI Ying. Transcriptomic analysis of differences in the starch content of different potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1503-1513.
[3] HAN Jie-Nan, ZHANG Ze, LIU Xiao-Li, LI Ran, SHANG-GUAN Xiao-Chuan, ZHOU Ting-Fang, PAN Yue, HAO Zhuan-Fang, WENG Jian-Feng, YONG Hong-Jun, ZHOU Zhi-Qiang, XU Jing-Yu, LI Xin-Hai, LI Ming-Shun. Analysis of differential accumulation of starch in waxy maize grain caused by the o2 mutation gene [J]. Acta Agronomica Sinica, 2024, 50(5): 1207-1222.
[4] NAN Jin-Sheng, AN Jiang-Hong, CHAI Ming-Na, JIANG Yu-Lian, ZHU Zhi-Qiang, YANG Yan, HAN Bing. Relationship between the starch properties and its surface-bound proteins in grains with hardness in Avena nuda L. [J]. Acta Agronomica Sinica, 2023, 49(9): 2552-2561.
[5] WANG Yuan, WANG Jin-Song, DONG Er-Wei, LIU Qiu-Xia, WU Ai-Lian, JIAO Xiao-Yan. Effect of nitrogen application level on grain starch accumulation at grain filling stage in sorghum spikelets [J]. Acta Agronomica Sinica, 2023, 49(7): 1968-1978.
[6] GAO Xin, GUO Lei, SHAN Bao-Xue, XIAO Yan-Jun, LIU Xiu-Kun, LI Hao-Sheng, LIU Jian-Jun, ZHAO Zhen-Dong, CAO Xin-You. Types and ratios of starch granules in grains and their roles in the formation and improvement of wheat quality properties [J]. Acta Agronomica Sinica, 2023, 49(6): 1447-1454.
[7] WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101.
[8] GAO Chun-Hua, FENG Bo, LI Guo-Fang, LI Zong-Xin, LI Sheng-Dong, CAO Fang, CI Wen-Liang, ZHAO Hai-Jun. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis [J]. Acta Agronomica Sinica, 2023, 49(3): 821-832.
[9] LI Qiu-Ping, ZHANG Chun-Long, YANG Hong, WANG Tuo, LI Juan, JIN Shou-Lin, HUANG Da-Jun, LI Dan-Dan, WEN Jian-Cheng. Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 634-646.
[10] DU Juan, PENG Xiao-Jun, HOU Juan, LIU Teng-Fei, LIU Zeng, SONG Bo-Tao. Identification of potato amylase StBAM9 interacting protein and analysis of the interaction mechanism [J]. Acta Agronomica Sinica, 2023, 49(10): 2643-2653.
[11] LI Rong, MIAN You-Ming, HOU Xian-Qing, LI Pei-Fu, WANG Xi-Na. Effects of straw returning with nitrogen application on soil properties, water and nitrogen use efficiency of maize [J]. Acta Agronomica Sinica, 2023, 49(10): 2820-2832.
[12] WANG Rui-Pu, DONG Zhen-Ying, GAO Yue-Xin, BAO Jian-Xi, YIN Fang-Bing, LI Jin-Ping, LONG Yan, WAN Xiang-Yuan. Genome-wide association study and candidate gene prediction of kernel starch content in maize [J]. Acta Agronomica Sinica, 2023, 49(1): 140-152.
[13] WU Xu-Li, WU Zheng-Dan, WAN Chuan-Fang, DU Ye, GAO Yan, LI Ze-Xuan, WANG Zhi-Qian, TANG Dao-Bin, WANG Ji-Chun, ZHANG Kai. Functional identification of sucrose transporter protein IbSWEET15 in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(1): 129-139.
[14] JIANG Yan, ZHAO Can, CHEN Yue, LIU Guang-Ming, ZHAO Ling-Tian, LIAO Ping-Qiang, WANG Wei-Ling, XU Ke, LI Guo-Hui, WU Wen-Ge, HUO Zhong-Yang. Effects of nitrogen panicle fertilizer application on physicochemical properties and fine structure of japonica rice starch and its relationship with eating quality [J]. Acta Agronomica Sinica, 2023, 49(1): 200-210.
[15] LIU Yu-Ling, ZHANG Hong-Yan, TENG Chang-Cai, ZHOU Xian-Li, HOU Wan-Wei. Genetic diversity and its association analysis of SSR markers with starch content in faba bean (Vicia faba L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2786-2796.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!