Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (11): 2712-2719.doi: 10.3724/SP.J.1006.2024.43008

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and functional analysis of viviparous mutant vp2 in maize

ZHANG Xin-Yue1,2(), QIN Yang2, LI Rui3, HUANG Quan-Sheng4, WANG Yi-Ru2,*(), ZHENG Jun1,2,*()   

  1. 1College of Agronomy, Qingdao Agricultural University, Qingdao 266109, Shandong, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3College of Agriculture, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    4Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
  • Received:2024-02-05 Accepted:2024-06-20 Online:2024-11-12 Published:2024-07-11
  • Contact: *E-mail: zhengjun02@caas.cn; E-mail: wangyiru@caas.c
  • Supported by:
    Open Project of Key Laboratory, Xinjiang Uygur Autonomous Region(2023D04070)

Abstract:

Maize vivipary, the precocious germination of seeds on the ear, significantly impacts maize yield and quality. Developing vivipary-resistant maize varieties through the discovery of novel genes is crucial for agricultural production in China. In this study, the maize mutant vp2 exhibited a clear viviparous phenotype with stable inheritance, controlled by a single recessive gene. Genome sequence analysis of the vp2 mutant revealed deletions in two coding genes (Zm00001d015355 and Zm00001d015356), with Zm00001d015356 encoding p-hydroxypyruvate dioxygenase (ZmHPPD1). The hppd1 mutant also displayed a viviparous phenotype. Furthermore, test crosses between vp2 and hppd1 heterozygous plants showed a 3:1 segregation ratio between normal and viviparous kernels, suggesting that ZmHPPD1 is the candidate gene for vp2. To further investigate the mechanism by which ZmHPPD1 regulates maize vivipary, we analyzed endogenous hormone and metabolite content in the ABA synthesis pathway. The results indicated a significant decrease in ABA levels, a substantial accumulation of octahydro lycopene, and a notable reduction in purple xanthophyll, zeaxanthin, and lutein in viviparous kernels. ZmHPPD1 disrupts ABA synthesis by affecting the conversion of octahydro lycopene to lycopene, leading to the loss of dormancy and early germination of maize kernels. These findings provide valuable genetic resources for breeding vivipary-resistant maize.

Key words: maize, viviparous, plant hormones, abscisic acid

Fig. 1

Viviparous phenotype of vp2 mutant A: ear and kernels phenotypes of the vp2 heterozygous mutant at 25 days after pollination, scale bar: 1 cm; B: longitudinal sections of normal kernels (WT) and viviparous kernels (vp2) harvested at 18 d, 21 d, and 25 d; bar: 500 μm."

Table 1

Primers used in this study"

引物
Primer
引物序列
Primer sequences (5′-3′)
vp2-F1 CGCAGCCAGATACAAACGTT
vp2-R1 GGGACATGGGAGCTCGAATT
TIR8.1 GAAGCCAACGCCAWCGCCTCYATTTCGTCGAAT
vp2-F2 ACTACGGGCTGAGCAGGTT
vp2-R2 TGAAGATTTGGAGCAGCACG
GAPDH-F CCCTTCATCACCACGGACTAC
GAPDH-R AACCTTCTTGGCACCACCCT

Table 2

Segregation of normal and viviparous kernels on vp2 self-pollinated heterozygous ears"

植株基因型
Plant genotype
籽粒表型 Kernel phenotype
正常籽粒
Normal
穗发芽籽粒
Viviparous
总数
Total
χ2
(3:1)
B73×vp2/+ 162 48 210 0.406
128 37 165 0.454

Fig. 2

Vp2 encodes p-hydroxyphenylpyruvate dioxygenase ZmHPPD1 A: gene mapping of vp2 mutant genes by BSR-Seq; B: gene differences between B73 and vp2 mutant materials; C: expression of ZmHPPD1 in vp2 mutants."

Fig. 3

Allelic test of hppd1 with vp2 by heterozygous mutants A: gene structure of ZmHPPD1 and mutation site of hppd1; B: identification of Mu transposon insertion in hppd1; C: ear and kernels phenotypes of hppd1 heterozygous mutants; D: the ear and kernels phenotypes of the hybrid between hppd1 and vp2."

Table 3

Separation of normal and viviparous kernels on hppd1 self-pollinated heterozygous ears and the crosses of vp2 and hppd1 heterozygous ears"

植株基因型
Plant genotype
籽粒表型 Kernel phenotype
正常籽粒
Normal
穗发芽籽粒
Viviparous
总数
Total
χ2
(3:1)
hppd1/+ 96 31 127 0.003
128 44 172 0.008
hppd1/+×vp2/+ 171 64 235 0.512
156 57 213 0.264

Fig. 4

Analysis of endogenous hormone in the kernels of WT and vp2 A: ABA; B: ABA-GE; C: SA; D: IAA; E: SL; F: JA; G: CK; H: ETH. ** indicates significant correlation at the P < 0.01."

Fig. 5

Content of related metabolites in the ABA synthesis pathway A: (E/Z)-phytoene; B: α-carotene; C: lutein; D: β-carotene; E: violaxanthin; F: zeaxanthin. *, ** indicate significant correlation at the P < 0.05 and P < 0.01, respectively."

Fig. 6

ABA biosynthetic pathway of WT and vp2 A: the ABA biosynthesis pathway of WT; B: the ABA biosynthesis pathway of vp2 mutant. In the metabolic pathway, green indicates a decrease of metabolite, and red indicates an increase of metabolite."

[1] Xu F, Tang J, Gao S, Cheng X, Du L, Chu C. Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling. Plant J, 2019, 100: 1036-1051.
[2] Tai L, Wang H J, Xu X J, Sun W H, Ju L, Liu W T, Li W Q, Sun J, Chen K M. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. J Exp Bot, 2021, 72: 2857-2876.
doi: 10.1093/jxb/erab024 pmid: 33471899
[3] Waadt R, Seller C A, Hsu P K, Takahashi Y, Munemasa S, Schroeder J I. Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol, 2022, 23: 680-694.
[4] Chen K, Li G J, Bressan R A, Song C P, Zhu J K, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol, 2020, 62: 25-54.
doi: 10.1111/jipb.12899
[5] 陈唯, 曾晓贤, 谢楚萍, 田长恩, 周玉萍. 植物内源ABA水平的动态调控机制. 植物学报, 2019, 54: 677-687.
doi: 10.11983/CBB19092
Chen W, Zeng X X, Xie C P, Tian C E, Zhou Y P. The dynamic regulation mechanism of the endogenous ABA in plant. Chin Bull Bot, 2019, 54: 677-687 (in Chinese with English abstract).
[6] Endo A, Okamoto M, Koshiba T. ABA biosynthetic and catabolic pathways. In: ZhangD P, Transport and Signaling.eds. Abscisic Acid:Metabolism, Dordrecht: Springer, 2014. pp 21-45.
[7] 伍静辉, 谢楚萍, 田长恩, 周玉萍. 脱落酸调控种子休眠和萌发的分子机制. 植物学报, 2018, 53: 542-555.
doi: 10.11983/CBB18080
Wu J H, Xie C P, Tian C G, Zhou Y P. Molecular mechanism of abscisic acid regulation during seed dormancy and germination. Chin Bull Bot, 2018, 53: 542-555 (in Chinese with English abstract).
[8] Fang J, Chai C, Qian Q, Li C, Tang J, Sun L, Huang Z, Guo X, Sun C, Liu M, Zhang Y, Lu Q, Wang Y, Lu C, Han B, Chen F, Cheng Z, Chu C. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo- oxidation in rice. Plant J, 2008, 54: 177-189.
[9] Lang J, Fu Y, Zhou Y, Cheng M, Deng M, Li M, Zhu T, Yang J, Guo X, Gui L, Li L, Chen Z, Yi Y, Zhang L, Hao M, Huang L, Tan C, Chen G, Jiang Q, Qi P, Pu Z, Ma J, Liu Z, Liu Y, Luo M C, Wei Y, Zheng Y, Wu Y, Liu D, Wang J. Myb10-D confers PHS-3D resistance to pre-harvest sprouting by regulating NCED in ABA biosynthesis pathway of wheat. New Phytol, 2021, 230: 1940-1952.
[10] Mei S, Zhang M, Ye J, Du J, Jiang Y, Hu Y. Auxin contributes to jasmonate-mediated regulation of abscisic acid signaling during seed germination in Arabidopsis . Plant Cell, 2023, 35: 1110-1133.
[11] Cheng W H, Chiang M H, Hwang S G, Lin P C. Antagonism between abscisic acid and ethylene in Arabidopsis acts in parallel with the reciprocal regulation of their metabolism and signaling pathways. Plant Mol Biol, 2009, 71: 61-80.
[12] Xiong M, Chu L Y, Li Q F, Yu J W, Yang Y H, Zhou P, Zhou Y, Zhang Q Q, Fan X L, Zhao D S, Yan C J, Liu Q Q. Brassinosteroid and gibberellin coordinate rice seed germination and embryo growth by regulating glutelin mobilization. Crop J, 2021, 9: 1039-1048.
doi: 10.1016/j.cj.2020.11.006
[13] Robertson D S. The genetics of vivipary in maize. Genetics, 1955, 40: 745.
doi: 10.1093/genetics/40.5.745 pmid: 17247587
[14] McCarty D R, Carson C B, Stinard P S, Robertson D S. Molecular analysis of viviparous-I: an abscisic acid-insensitive mutant of maize. Plant Cell, 1989, 1: 523-532.
[15] Dai D, Tong H, Cheng L, Peng F, Zhang T, Qi W, Song R. Maize Dek33 encodes a pyrimidine reductase in riboflavin biosynthesis that is essential for oil-body formation and ABA biosynthesis during seed development. J Exp Bot, 2019,70: 5173-5187.
[16] Suzuki M, Latshaw S, Sato Y, Settles A M, Koch K E, Hannah L C, Kojima M, Sakakibara H, McCarty D R. The maize Viviparous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1- like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development. Plant Physiol, 2008, 146: 1193-1206.
[17] Porch T G, Tseung C W, Schmelz E A, Settles A M. The maize Viviparous10/Viviparous13 locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis. Plant J, 2006, 45: 250-263.
[18] Schwartz S H, Tan B C, Gage D A, Zeevaart J A, McCarty D R. Specific oxidative cleavage of carotenoids by VP14 of maize. Science, 1997, 276: 1872-1874.
doi: 10.1126/science.276.5320.1872 pmid: 9188535
[19] Suzuki M, Settles A M, Tseung C W, Li Q B, Latshaw S, Wu S, Porch T G, Schmelz E A, James M G, McCarty D R. The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Plant J, 2006, 45: 264-274.
[20] Hable W E, Oishi K K, Schumaker K S. Viviparous-5 encodes phytoene desaturase, an enzyme essential for abscisic acid (ABA) accumulation and seed development in maize. Mol Gen Genet, 1998, 257: 167-176.
[21] Singh M, Lewis P E, Hardeman K, Bai L, Rose J K, Mazourek M, Chomet P, Brutnell T P. Activator mutagenesis of the pink scutellum l/viviparous7 locus of maize. Plant Cell, 2003, 15: 874-884.
[22] Chen Y, Li J, Fan K, Du Y, Ren Z, Xu J, Zheng J, Liu Y, Fu J, Ren D, Wang G. Mutations in the maize zeta-carotene desaturase gene lead to viviparous kernel. PLoS One, 2017, 12: e0174270.
[23] Maluf M P Saab I N, Wurtzel E T, Mark Settles A. The viviparous12 maize mutant is deficient in abscisic acid, carotenoids, and chlorophyll synthesis. J Exp Bot, 1997, 48: 1259-1268.
[24] Li F, Murillo C, Wurtzel E T. Maize Y9 encodes a product essential for 15-cis-ζ-carotene isomerization. Plant Physiol, 2007, 144: 1181-1189.
[25] Hunter C T, Saunders J W, Magallanes-Lundback M, Christensen S A, Willett D, Stinard P S, Li Q B, Lee K, DellaPenna D, Koch K E. Maize w3 disrupts homogentisate solanesyl transferase (ZmHst) and reveals a plastoquinone-9 independent path for phytoene desaturation and tocopherol accumulation in kernels. Plant J, 2018, 93: 799-813.
[26] Matthews P D, Luo R, Wurtzel E T. Maize phytoene desaturase and zeta-carotene desaturase catalyse a poly-Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops. J Exp Bot, 2003, 54: 2215-2230.
pmid: 14504297
[27] McCarty D R, Latshaw S, Wu S, Suzuki M, Hunter C T, Avigne W T, Koch K E. Mu-seq: sequence-based mapping and identification of transposon induced mutations. PLoS One, 2013, 8: e77172.
[28] 郭宇航. 玉米穗发芽突变体vp-like8的转录组分析与玉米杂交种耐旱性遗传解析. 山西农业大学硕士学位论文, 山西太原, 2020.
Guo Y H. Transcriptome Analysis of Maize Viviparous Mutant vp-like8 and Genetic Analysis of Drought Tolerance of Hybrid Maize. MS Thesis of Shanxi Agricultural University, Taiyuan, Shanxi, China 2020 (in Chinese with English abstract).
[29] 周蕴赟, 李正名. HPPD抑制剂类除草剂作用机制和研究进展. 世界农药, 2013, 35(1): 1-7.
Zhou Y Y, Li Z M. Recent advances in 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors. World Pestic, 2013, 35(1): 1-7.
[30] 何波, 王大伟, 杨文超, 陈琼, 杨光富. 对羟基苯丙酮酸双加氧酶(HPPD)的结构及其吡唑类除草剂的最新研究进展. 有机化学, 2017, 37: 2895-2904.
doi: 10.6023/cjoc201705031
He B, Wang D W, Yang W C, Chen Q, Yang G F. Advances in research on 4-hydroxyphenylpyruvate dioxygenase (HPPD) structure and pyrazole-containing herbicides. Chin J Org Chem, 2017, 37: 2895-2904 (in Chinese with English abstract).
[31] Beaudoin N, Serizet C, Gosti F, Giraudat J. Interactions between abscisic acid and ethylene signaling cascades. Plant Cell, 2000, 12: 1103-1115.
pmid: 10899977
[32] Liu X, Hu Q, Yan J, Sun K, Liang Y, Jia M, Meng X, Fang S, Wang Y, Jing Y, Liu G, Wu D, Chu C, Smith S M, Chu J, Wang Y, Li J, Wang B. ζ-carotene isomerase suppresses tillering in rice through the coordinated biosynthesis of strigolactone and abscisic acid. Mol Plant, 2020, 13: 1784-1801.
doi: 10.1016/j.molp.2020.10.001 pmid: 33038484
[33] Huang X, Hou L, Meng J, You H, Li Z, Gong Z, Yang S, Shi Y. The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Mol Plant, 2018, 11: 970-982.
[34] Wang Y, Hou Y, Qiu J, Wang H, Wang S, Tang L, Tong X, Zhang J. Abscisic acid promotes jasmonic acid biosynthesis via a “SAPK10- bZIP72-AOC” pathway to synergistically inhibit seed germination in rice (Oryza sativa). New Phytol, 2020, 228: 1336-1353.
[1] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[2] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[3] GUO Si-Yu, ZHAO Ke-Yong, DAI Zheng-Gang, ZOU Hua-Wen, WU Zhong-Yi, ZHANG Chun. Functional analysis of maize N-acetyltransferase ZmNAT1 gene in response to abiotic stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2001-2013.
[4] CAO Xiao-Qing, QI Xian-Tao, LIU Chang-Lin, XIE Chuan-Xiao. Construction and verification of the CRISPR/Cas9 system containing DsRed fluorescent expression cassette for editing of ZmCCT10, ZmCCT9, and ZmGhd7 genes in maize [J]. Acta Agronomica Sinica, 2024, 50(8): 1961-1970.
[5] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[6] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
[7] LIU Shuang, LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte [J]. Acta Agronomica Sinica, 2024, 50(8): 1896-1906.
[8] LIANG Lu, ZHOU Bao-Yuan, GAO Zhuo-Han, WANG Rui, WANG Xin-Bing, ZHAO Ming, LI Cong-Feng. Root and shoot growth of different maize varieties in response to soil compaction stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2053-2066.
[9] WANG Rui, SUN Bo, ZHANG Yun-Long, ZHANG Ming-Qi, FAN Ya-Ming, TIAN Hong-Li, ZHAO Yi-Kun, YI Hong-Mei, KUANG Meng, WANG Feng-Ge. Application analysis of chloroplast markers on rapid classification in maize germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1867-1876.
[10] FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with maize C4-type ZmPEPC+ZmPPDK gene [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657.
[11] WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627.
[12] SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434.
[13] ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450.
[14] WANG Yong-Liang, XU Zi-Hang, LI Shen, LIANG Zhe-Ming, BAI Ju, YANG Zhi-Ping. Effects of different mulching measures on moisture and temperature of soil and yield and water use efficiency of spring maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1312-1324.
[15] TIAN Hong-Li, YANG Yang, FAN Ya-Ming, YI Hong-Mei, WANG Rui, JIN Shi-Qiao, JIN Fang, ZHANG Yun-Long, LIU Ya-Wei, WANG Feng-Ge, ZHAO Jiu-Ran. Development of an optimal core SNP loci set for maize variety genuineness identification [J]. Acta Agronomica Sinica, 2024, 50(5): 1115-1123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!