WANG Zhe1,2,**, HU Yan-Ling1,2,**, GONG Fang-Yi1,2, YI Rui1,2, ZHAO Shu-Hong1,2, LIU Rui-Qin1,2, LIU Yu-Hang1,2, ZHANG Tian1,2, ZHANG Ya-Zhou1,2, ZHENG You-Liang1,2, LIU Deng-Cai1,2, HUANG Lin1,2,*,WU Bi-Hua1,2,*
[1] 陈建省. 小麦高密度遗传图谱构建和品质性状的QTL分析及分子标记开发. 山东农业大学博士学位论文, 山东泰安, 2015. Chen J X. Construction of High-density Genetic Map and QTL Analysis of Quality Traits and Molecular Marker Development of Wheat. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2015 (in Chinese with English abstract). [2] Gupta P K, Balyan H S, Sharma S, Kumar R. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. Theor Appl Genet, 2021, 134: 1–35. [3] 赵广才, 何中虎, 刘利华, 杨玉双, 张艳. 肥水调控对强筋小麦中优9507品质与产量协同提高的研究. 中国农业科学, 2004, 37: 351–356. Zhao G C, He Z H, Liu L H, Yang Y S, Zhang Y. Study on the synergistic improvement of quality and yield of strong gluten wheat Zhongyou 9507 by fertilizer and water regulation. Sci Agric Sin, 2004, 37: 351–356 (in Chinese with English abstract). [4] Wang D W, Zhang K P, Dong L L, Dong Z Y, Li Y W, Hussain A, Zhai H J. Molecular genetic and genomic analysis of wheat milling and end-use traits in China: progress and perspectives. Crop J, 2018, 6: 68–81. [5] 薛盈文, 于立河, 郭伟. 影响小麦品质的因素及改善小麦品质的途径. 黑龙江八一农垦大学学报, 2005, 17(3): 32–38. Xue Y W, Li-He Y U, Wei G. The influential factors on the wheat quality and the ways of improving the wheat quality. J Heilongjiang Aug First Land Reclam Univ, 2005, 17(3): 32–38. [6] 翟凤林. 小麦的烤面包品质与面包小麦育种. 北京农业科学, 1989, (2): 1–3. Zhai F L. Bread quality of wheat and bread wheat breeding. Beijing Agric. Sci, 1989, (2): 1–3 (in Chinese). [7] 王光瑞, 舒卫国, 张玉良. 冬小麦主要品质性状鉴定及其相关性研究. 中国粮油学报, 1996, (4): 1–7. Wang G R, Shu W G, Zhang Y L. Identification of main quality traits of winter wheat and their correlation. J Chin Cereals Oils Assoc, 1996, (4): 1–7 (in Chinese with English abstract). [8] 赵新, 王步军. 小麦蛋白质和淀粉性状与面包品质关系研究进展. 中国农学通报, 2008, 24(12): 124–127. Zhao X, Wang B J. Research progress on the relationship between wheat protein and starch traits and bread quality. Chin Agric Sci Bull, 2008, 24(12): 124–127 (in Chinese with English abstract). [9] 黄晓荣, 曹承富, 杜世州, 张耀兰, 武际. 全自动定氮仪测定小麦籽粒蛋白质. 安徽农业科学, 2009, 37: 8823–8824. Huang X R, Cao C F, Du S Z, Zhang Y L, Wu J. Determination of wheat grain protein by automatic nitrogen analyzer. J Anhui Agric Sci, 2009, 37: 8823–8824 (in Chinese with English abstract). [10] Jaradat A. Ecogeography, genetic diversity, and breeding value of wild emmer wheat (Triticum dicoccoides’ Korn ex Asch. and Graebn.) Thell. Aust J Crop Sci, 2011, 5: 1072–1086. [11] Nevo E. Genetic resources of wild emmer, Triticum dicoccoides, for wheat improvement in the third millennium. Isr J Plant Sci, 2001, 49: 77–92. [12] Line R F, Qayoum A. Virulence, aggressiveness, evolution and distribution of races of Puccinia striiformis (the cause of stripe of wheat) in North America, 1968–1987. Technic bull, 1992, (1788): 1–44. [13] 李立会, 李秀全, 杨欣明. 小麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 1–86. Li L H, Li X Q, Yang X M. Description Specification and Data Standard of Wheat Germplasm Resources. Beijing: China Agric Press, 2006. pp 1–86 (in Chinese). [14] Zeng Z K, Guo C, Yan X F, Song J Q, Wang C P, Xu X T, Hao Y F. QTL mapping and KASP marker development for seed vigor related traits in common wheat. Front Plant Sci, 2022, 13: 994973. [15] 胡喜贵, 伍碧华. 伊斯帕汗小麦NAM-B1基因序列与蛋白质含量变异的分析. 麦类作物学报, 2017, 37: 295–300. Hu X G, Wu B H. Variations of NAM-B1 gene and grain protein content in Triticum ispahanicum heslot. J Triticeae Crops, 2017, 37: 295–300 (in Chinese with English abstract). [16] 王栋. 野生二粒小麦NAM-B1基因导入川农16后的表达情况及对品质的影响. 四川农业大学硕士学位论文, 四川成都, 2015. Wang D. Expression of Wild Emmer Wheat NAM-B1 gene introduced into Chuanong 16 and Its Effect on Quality. Master’s Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2015 (in Chinese with English abstract). [17] Gong F Y, Qi T G, Zhang T, Lu Y S, Liu J, Zhong X Y, He J S, Li Y F, Zheng Y L, Liu D C, et al. Comparison of the agronomic, cytological, grain protein characteristics, as well as transcriptomic profile of two wheat lines derived from wild emmer. Front Genet, 2022, 12: 804481. [18] 吴瑜. 小麦新品种“川育27”选育, 2018. https://kns.cnki.net/kcms2/article/abstract?v=mV2q5OJ_OLzNwQoWbiM3ZT-f4S3v6ogRbFW6XfZQQhs5DEIJn4OCUcNPDiDGTOKlYWbHsDAC0uGdBcyan8vHm3Z3g8kK8BrCUTaGJMB9Q6TuOJL1xxTq-kdnPoWPBJVfOoL_OxzOTMpFON3r4SdfRHF5t0DH5f9rpDpx6rDKyuwfP0UCFcfQRw==&uniplatform=NZKPT&language=CHS. Wu Y. Breeding of New Wheat Variety “Chuanyu 27”, 2018. https://kns.cnki.net/kcms2/article/abstract?v=mV2q5OJ_OLzNwQoWbiM3ZT-f4S3v6ogRbFW6XfZQQhs5DEIJn4OCUcNPDiDGTOKlYWbHsDAC0uGdBcyan8vHm3Z3g8kK8BrCUTaGJMB9Q6TuOJL1xxTq-kdnPoWPBJVfOoL_OxzOTMpFON3r4SdfRHF5t0DH5f9rpDpx6rDKyuwfP0UCFcfQRw==&uniplatform=NZKPT&language=CHS (in Chinese). [19] Griffiths S, Simmonds J, Leverington M, Wang Y K, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J. Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breed, 2012, 29: 159–171. [20] 赵倩, 梁新明, 姜鸿明, 丁晓义, 姜月敏. 小麦矮化对产量及抗倒性的影响. 莱阳农学院学报, 1999, 16(3): 168–171. Zhao Q, Liang X M, Jiang H M, Ding X Y, Jiang Y M. Effects of wheat dwarfing on yield and lodging resistance. J Laiyang Agric Coll, 1999, 16(3): 168–171 (in Chinese with English abstract). [21] 杨子光, 沈东风, 王书子, 高海涛, 段国辉, 张学品. 旱地小麦籽粒品质与农艺性状关系的研究. 安徽农业科学, 2002, 18(3): 41–44. Yang Z G, Shen D F, Wang S Z, Gao H T, Duan G H, Zhang X P. Study on the relationship between grain quality and agronomic traits in dryland wheat. Anhui Agric Sci, 2002, 18(3): 41–44 (in Chinese with English abstract). [22] 张忠军, 张树榛. 对小麦形态性状之间多元关系的分析. 北京农业大学学报, 1986, (4): 379–385. Zhang Z J, Zhang S Z. Analysis of the multivariate relationship between morphological traits in wheat. J Beijing Agric Univ, 1986, (4): 379–385 (in Chinese with English abstract). [23] 朱新开, 郭文善, 李春燕, 封超年, 彭永欣. 小麦株高及其构成指数与产量及品质的相关性. 麦类作物学报, 2009, 29: 1034–1038. Zhu X K, Guo W S, Li C Y, Feng C N, Peng Y X. Correlation between plant height and composition index and yield and quality of wheat. J Triticeae Crops, 2009, 29: 1034–1038 (in Chinese with English abstract). [24] Naruoka Y, Talbert L E, Lanning S P, Blake N K, Martin J M, Sherman J D. Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat. Theor Appl Genet, 2011, 123: 1043–1053. [25] Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006, 314: 1298–1301. [26] Jamar C, Loffet F, Frettinger P, Ramsay L, Fauconnier M L, du Jardin P. NAM-1 gene polymorphism and grain protein content in Hordeum. J Plant Physiol, 2010, 167: 497–501. [27] Hu X G, Wu B H, Liu D C, Wei Y M, Gao S B, Zheng Y L. Variation and their relationship of NAM-G1 gene and grain protein content in Triticum timopheevii Zhuk. J Plant Physiol, 2013, 170: 330–337. [28] Echeverry-Solarte M, Kumar A, Kianian S, Simsek S, Alamri M S, Mantovani E E, McClean P E, Deckard E L, Elias E, Schatz B, et al. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary× non-supernumerary spikelet genotypes. Theor Appl Genet, 2015, 128: 893–912. [29] Prasad M, Kumar N, Kulwal P L, Röder M S, Balyan H S, Dhaliwal H S, Gupta P K. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet, 2003, 106: 659–667. [30] Blanco A, Pasqualone A, Troccoli A, Di Fonzo N, Simeone R. Detection of grain protein content QTLs across environments in tetraploid wheats. Plant Mol Biol, 2002,48: 615–623. [31] Olmos S, Distelfeld A, Chicaiza O, Schlatter A R, Fahima T, Echenique V, Dubcovsky J. Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet, 2003, 107: 1243–1251. [32] Joppa L R, Du C H, Hart G E, Hareland G A. Mapping gene (s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci, 1997, 37: 1586–1589. [33] Dholakia B B, Ammiraju J S S, Santra D K, Singh H, Katti M V, Lagu M D, Tamhankar S A, Rao V S, Gupta V S, Dhaliwal H S, et al. Molecular markers analysis of protein content using PCR based DNA markers in wheat. Biochem Genet, 2001, 39: 325–338. [34] Turner A S, Bradburne R P, Fish L, Snape J W. New quantitative trait loci influencing grain texture and protein content in bread wheat. J Cereal Sci, 2004, 40: 51–60. [35] Sun H Y, Lü J H, Fan Y D, Zhao Y, Kong F M, Li R J, Wang H G, Li S S. Quantitative trait loci (QTLs) for quality traits related to protein and starch in wheat. Prog Nat Sci, 2008, 18: 825–831. [36] Guo Z F, Yang Q N, Huang F F, Zheng H J, Sang Z Q, Xu Y F, Zhang C, Wu K S, Tao J J, Prasanna B M, et al. Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip. Plant Commun, 2021, 2: 100230. [37] Huang S, Zhang Y B, Ren H, Li X, Zhang X, Zhang Z Y, Zhang C L, Liu S J, Wang X T, Zeng Q D, et al. Epistatic interaction effect between chromosome 1BL (Yr29) and a novel locus on 2AL facilitating resistance to stripe rust in Chinese wheat Changwu 357–9. Theor Appl Genet, 2022, 135: 2501–2513. [38] Qiu D, Huang J, Guo G H, Hu J H, Li Y H, Zhang H J, Liu H W, Yang L, Zhou Y, Yang B Z, et al. The Pm5e gene has no negative effect on wheat agronomic performance: evidence from newly established near-isogenic lines. Front Plant Sci, 2022, 13: 918559. [39] 姚琦馥, 陈黄鑫, 周界光, 马瑞莹, 邓亮, 谭陈芯雨, 宋靖涵, 吕季娟, 马建. 基于16K SNP芯片的小麦株高QTL鉴定及其遗传分析. 中国农业科学, 2023, 56: 2237–2248. Yao Q F, Chen H X, Zhou J G, Ma R Y, Deng L, Tan C X Y, Song J H, Lyu J J, Ma J. QTL identification and genetic analysis of wheat plant height based on 16K SNP chip. Sci Agric Sin, 2023, 56: 2237–2248 (in Chinese with English abstract) |
[1] | YANG Hai-Yang, WU Lin-Xuan, LI Bo-Wen, SHI Han-Feng, YUAN Xi-Long, LIU Jin-Zhao, CAI Hai-Rong, CHEN Shi-Yi, GUO Tao, WANG Hui. OsWRI3, identified based on QTL mapping, regulates seed shattering in rice [J]. Acta Agronomica Sinica, 2025, 51(7): 1712-1724. |
[2] | HU Meng, SHA Dan, ZHANG Sheng-Rui, GU Yong-Zhe, ZHANG Shi-Bi, LI Jing, SUN Jun-Ming, QIU Li-Juan, LI Bin. QTL mapping and candidate gene screening for branch number in soybean [J]. Acta Agronomica Sinica, 2025, 51(7): 1747-1756. |
[3] | SHAO Shun-Wei, CHEN Zhuo, LAN Zhen-Dong, CAI Xing-Kui, ZOU Hua-Fen, LI Chen-Xi, TANG Jing-Hua, ZHU Xi, ZHANG Yu, DONG Jian-Ke, JIN Hui, SONG Bo-Tao. QTL mapping of tuber eye depth based on BSA-seq technique [J]. Acta Agronomica Sinica, 2025, 51(7): 1725-1735. |
[4] | ZHANG Jin-Ze, ZHOU Qing-Guo, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, LONG Xu, YAN Zhong-Bin, TIAN En-Tang. QTL mapping and candidate gene analysis of glucosinolate content in various tissues of Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(5): 1166-1177. |
[5] | ZHAN Zong-Bing, JIN Qi-Feng, LIU Di, LYU Ying-Chun, GUO Ying, ZHANG Xue-Ting, HU Meng-Xia, WANG Shang, YANG Fang-Ping. Molecular characterization and evaluation of important traits of landrace wheat Laomangmai in Gansu province, China [J]. Acta Agronomica Sinica, 2025, 51(3): 609-620. |
[6] | YONG Rui, HU Wen-Jing, WU Di, WANG Zun-Jie, LI Dong-Sheng, ZHAO Die, YOU Jun-Chao, XIAO Yong-Gui, WANG Chun-Ping. Identification and validation of quantitative trait loci for grain number per spike showing pleiotropic effect on thousand grain weight in bread wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 312-323. |
[7] | GUO Shu-Hui, PAN Zhuan-Xia, ZHAO Zhan-Sheng, YANG Liu-Liu, HUANG-FU Zhang-Long, GUO Bao-Sheng, HU Xiao-Li, LU Ya-Dan, DING Xiao, WU Cui-Cui, LAN Gang, LYU Bei-Bei, TAN Feng-Ping, LI Peng-Bo. Genetic analysis of a major fiber length locus on chromosome D11 of upland cotton [J]. Acta Agronomica Sinica, 2025, 51(2): 383-394. |
[8] | YANG Jing-Fa, YU Xin-Lian, YAO You-Hua, YAO Xiao-Hua, WANG Lei, WU Kun-Lun, LI Xin. QTL mapping of tiller angle in qingke (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2025, 51(1): 260-272. |
[9] | SHAO Mei-Hong, ZHAO Ling-Ling, CHENG Chu, CHENG Si-Ming, ZHU Shuang-Bing, ZHAI Lai-Yuan, CHEN Kai, XU Jian-Long. Screening, evaluation, and utilization of low nitrogen tolerance for the selected introgression lines in rice with Huanghuazhan background [J]. Acta Agronomica Sinica, 2024, 50(8): 1907-1919. |
[10] | LIU Shuang, LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte [J]. Acta Agronomica Sinica, 2024, 50(8): 1896-1906. |
[11] | HAN Li, TANG Sheng-Sheng, LI Jia, HU Hai-Bin, LIU Long-Long, WU Bin. Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats [J]. Acta Agronomica Sinica, 2024, 50(7): 1710-1718. |
[12] | BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683. |
[13] | QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727. |
[14] | ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450. |
[15] | ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542. |
|