Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

QTL mapping of grain protein content in the introgression line BAd7-209 derived from wild emmer

WANG Zhe1,2,**, HU Yan-Ling1,2,**, GONG Fang-Yi1,2, YI Rui1,2, ZHAO Shu-Hong1,2, LIU Rui-Qin1,2, LIU Yu-Hang1,2, ZHANG Tian1,2, ZHANG Ya-Zhou1,2, ZHENG You-Liang1,2, LIU Deng-Cai1,2, HUANG Lin1,2,*,WU Bi-Hua1,2,*   

  1. 1 State Key Laboratory of Crop Gene Resources Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China; 2 Wheat Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2025-01-22 Revised:2025-08-13 Accepted:2025-08-13 Published:2025-08-25
  • Supported by:
    This study was supported by the Sichuan Provincial International Science and Technology Innovation Cooperation Project (2021YFH0110) and Key R&D Project of Sichuan Provincial Department of Science and Technology (2021YFY2002-3-3).

Abstract:

The introgression line BAd7-209, characterized by a high grain protein content (GPC) despite lacking a functional NAM-B1 gene, has been officially named the wheat cultivar Triticum aestivum L. ‘Chuannong 1 Sicaomai’. It was developed from a cross between wild emmer (as the male parent) and the high-yielding but low-GPC common wheat variety Chuannong 16 (CN16). In this study, BAd7-209 was used as the male parent and crossed with two low-GPC common wheat cultivars, Chuanyu 27 (CY27) and CN16, to develop both a recombinant inbred line (RIL) F6:8 mapping population and an F6 validation population. The objective was to investigate the genetic basis of high GPC in BAd7-209 and to identify genetic resources for high-quality wheat breeding. Across four environments over two consecutive years, BAd7-209 exhibited a mean GPC of 15.35%, significantly higher than that of the female parent CY27 (12.30%). However, its thousand-grain weight (TGW) was 46.08 g—significantly lower than CY27 (50.53 g). The RIL population showed a mean GPC of 14.01% and a TGW of 52.02 g, both significantly higher than those of the parent lines. This indicates that the high GPC from BAd7-209 and the high TGW from CY27 were effectively transferred to the RIL population, minimizing the influence of the concentration effect and enabling more accurate evaluation of GPC. A total of five quantitative trait loci (QTLs) associated with GPC were identified, explaining 9.68% to 29.17% of the phenotypic variation. Notably, a novel major QTL, QGPC.sicau-YZ-6BS, derived from BAd7-209, was consistently associated with high GPC and accounted for 9.68%–29.17% of the variation. A functional KASP marker linked to this QTL was developed. Lines carrying this favorable locus exhibited significantly higher GPC than those without it (p < 0.01) across all tested environments and genetic backgrounds, with GPC increases of 17.89% and 41.20% in the mapping and validation populations, respectively. Additionally, thirteen novel wheat germplasm lines with superior traits—including grain quality, agronomic performance, and disease resistance—were selected from the 104 RILs. Their GPCs ranged from 13.99% to 18.08%, and TGWs ranged from 45.20 to 57.69 g. These findings provide valuable insights for future genetic research and the breeding of high-yield, high-quality wheat cultivars.

Key words: common wheat, wild emmer, introgression line, grain protein content, QTL mapping, high quality and yield, genetic and breeding

[1] 陈建省. 小麦高密度遗传图谱构建和品质性状的QTL分析及分子标记开发. 山东农业大学博士学位论文, 山东泰安, 2015.

Chen J X. Construction of High-density Genetic Map and QTL Analysis of Quality Traits and Molecular Marker Development of Wheat. PhD Dissertation of Shandong Agricultural University, Taian, Shandong, China, 2015 (in Chinese with English abstract).

[2] Gupta P K, Balyan H S, Sharma S, Kumar R. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. Theor Appl Genet, 2021, 134: 1–35.

[3] 赵广才, 何中虎, 刘利华, 杨玉双, 张艳. 肥水调控对强筋小麦中优9507品质与产量协同提高的研究. 中国农业科学, 2004, 37: 351–356.

Zhao G C, He Z H, Liu L H, Yang Y S, Zhang Y. Study on the synergistic improvement of quality and yield of strong gluten wheat Zhongyou 9507 by fertilizer and water regulation. Sci Agric Sin, 2004, 37: 351–356 (in Chinese with English abstract).

[4] Wang D W, Zhang K P, Dong L L, Dong Z Y, Li Y W, Hussain A, Zhai H J. Molecular genetic and genomic analysis of wheat milling and end-use traits in China: progress and perspectives. Crop J, 2018, 6: 68–81.

[5] 薛盈文, 于立河, 郭伟. 影响小麦品质的因素及改善小麦品质的途径. 黑龙江八一农垦大学学报, 2005, 17(3): 32–38.

Xue Y W, Li-He Y U, Wei G. The influential factors on the wheat quality and the ways of improving the wheat quality. J Heilongjiang Aug First Land Reclam Univ, 2005, 17(3): 32–38.

[6] 翟凤林. 小麦的烤面包品质与面包小麦育种. 北京农业科学, 1989, (2): 1–3. 

Zhai F L. Bread quality of wheat and bread wheat breeding. Beijing Agric. Sci, 1989, (2): 1–3 (in Chinese).

[7] 王光瑞, 舒卫国, 张玉良. 冬小麦主要品质性状鉴定及其相关性研究. 中国粮油学报, 1996, (4): 1–7. 

Wang G R, Shu W G, Zhang Y L. Identification of main quality traits of winter wheat and their correlation. J Chin Cereals Oils Assoc, 1996, (4): 1–7 (in Chinese with English abstract).

[8] 赵新, 王步军. 小麦蛋白质和淀粉性状与面包品质关系研究进展. 中国农学通报, 2008, 24(12): 124–127. 

Zhao X, Wang B J. Research progress on the relationship between wheat protein and starch traits and bread quality. Chin Agric Sci Bull, 2008, 24(12): 124–127 (in Chinese with English abstract).

[9] 黄晓荣, 曹承富, 杜世州, 张耀兰, 武际. 全自动定氮仪测定小麦籽粒蛋白质. 安徽农业科学, 2009, 37: 8823–8824.

Huang X R, Cao C F, Du S Z, Zhang Y L, Wu J. Determination of wheat grain protein by automatic nitrogen analyzer. J Anhui Agric Sci, 2009, 37: 8823–8824 (in Chinese with English abstract).

[10] Jaradat A. Ecogeography, genetic diversity, and breeding value of wild emmer wheat (Triticum dicoccoides’ Korn ex Asch. and Graebn.) Thell. Aust J Crop Sci, 2011, 5: 1072–1086.

[11] Nevo E. Genetic resources of wild emmer, Triticum dicoccoides, for wheat improvement in the third millennium. Isr J Plant Sci, 2001, 49: 77–92.

[12] Line R F, Qayoum A. Virulence, aggressiveness, evolution and distribution of races of Puccinia striiformis (the cause of stripe of wheat) in North America, 19681987. Technic bull, 1992, (1788): 144.

[13] 李立会, 李秀全, 杨欣明. 小麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 1–86.

Li L H, Li X Q, Yang X M. Description Specification and Data Standard of Wheat Germplasm Resources. Beijing: China Agric Press, 2006. pp 1–86 (in Chinese).

[14] Zeng Z K, Guo C, Yan X F, Song J Q, Wang C P, Xu X T, Hao Y F. QTL mapping and KASP marker development for seed vigor related traits in common wheat. Front Plant Sci, 2022, 13: 994973.

[15] 胡喜贵, 伍碧华. 伊斯帕汗小麦NAM-B1基因序列与蛋白质含量变异的分析. 麦类作物学报, 2017, 37: 295–300.

Hu X G, Wu B H. Variations of NAM-B1 gene and grain protein content in Triticum ispahanicum heslot. J Triticeae Crops, 2017, 37: 295–300 (in Chinese with English abstract).

[16] 王栋. 野生二粒小麦NAM-B1基因导入川农16后的表达情况及对品质的影响. 四川农业大学硕士学位论文, 四川成都, 2015.

Wang D. Expression of Wild Emmer Wheat NAM-B1 gene introduced into Chuanong 16 and Its Effect on Quality. Master’s Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2015 (in Chinese with English abstract).

[17] Gong F Y, Qi T G, Zhang T, Lu Y S, Liu J, Zhong X Y, He J S, Li Y F, Zheng Y L, Liu D C, et al. Comparison of the agronomic, cytological, grain protein characteristics, as well as transcriptomic profile of two wheat lines derived from wild emmer. Front Genet, 2022, 12: 804481.

[18] 吴瑜. 小麦新品种川育27”选育, 2018. https://kns.cnki.net/kcms2/article/abstract?v=mV2q5OJ_OLzNwQoWbiM3ZT-f4S3v6ogRbFW6XfZQQhs5DEIJn4OCUcNPDiDGTOKlYWbHsDAC0uGdBcyan8vHm3Z3g8kK8BrCUTaGJMB9Q6TuOJL1xxTq-kdnPoWPBJVfOoL_OxzOTMpFON3r4SdfRHF5t0DH5f9rpDpx6rDKyuwfP0UCFcfQRw==&uniplatform=NZKPT&language=CHS.

Wu Y. Breeding of New Wheat Variety “Chuanyu 27”, 2018. https://kns.cnki.net/kcms2/article/abstract?v=mV2q5OJ_OLzNwQoWbiM3ZT-f4S3v6ogRbFW6XfZQQhs5DEIJn4OCUcNPDiDGTOKlYWbHsDAC0uGdBcyan8vHm3Z3g8kK8BrCUTaGJMB9Q6TuOJL1xxTq-kdnPoWPBJVfOoL_OxzOTMpFON3r4SdfRHF5t0DH5f9rpDpx6rDKyuwfP0UCFcfQRw==&uniplatform=NZKPT&language=CHS (in Chinese).

[19] Griffiths S, Simmonds J, Leverington M, Wang Y K, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J. Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breed, 2012, 29: 159–171.

[20] 赵倩, 梁新明, 姜鸿明, 丁晓义, 姜月敏. 小麦矮化对产量及抗倒性的影响. 莱阳农学院学报, 1999, 16(3): 168–171. 

Zhao Q, Liang X M, Jiang H M, Ding X Y, Jiang Y M. Effects of wheat dwarfing on yield and lodging resistance. J Laiyang Agric Coll, 1999, 16(3): 168–171 (in Chinese with English abstract).

[21] 杨子光, 沈东风, 王书子, 高海涛, 段国辉, 张学品. 旱地小麦籽粒品质与农艺性状关系的研究. 安徽农业科学, 2002, 18(3): 41–44.

Yang Z G, Shen D F, Wang S Z, Gao H T, Duan G H, Zhang X P. Study on the relationship between grain quality and agronomic traits in dryland wheat. Anhui Agric Sci, 2002, 18(3): 41–44 (in Chinese with English abstract).

[22] 张忠军, 张树榛. 对小麦形态性状之间多元关系的分析. 北京农业大学学报, 1986, (4): 379–385.

Zhang Z J, Zhang S Z. Analysis of the multivariate relationship between morphological traits in wheat. J Beijing Agric Univ, 1986, (4): 379–385 (in Chinese with English abstract).

[23] 朱新开, 郭文善, 李春燕, 封超年, 彭永欣. 小麦株高及其构成指数与产量及品质的相关性. 麦类作物学报, 2009, 29: 1034–1038.

Zhu X K, Guo W S, Li C Y, Feng C N, Peng Y X. Correlation between plant height and composition index and yield and quality of wheat. J Triticeae Crops, 2009, 29: 1034–1038 (in Chinese with English abstract).

[24] Naruoka Y, Talbert L E, Lanning S P, Blake N K, Martin J M, Sherman J D. Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat. Theor Appl Genet, 2011, 123: 1043–1053.

[25] Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006, 314: 1298–1301.

[26] Jamar C, Loffet F, Frettinger P, Ramsay L, Fauconnier M L, du Jardin P. NAM-1 gene polymorphism and grain protein content in Hordeum. J Plant Physiol, 2010, 167: 497–501.

[27] Hu X G, Wu B H, Liu D C, Wei Y M, Gao S B, Zheng Y L. Variation and their relationship of NAM-G1 gene and grain protein content in Triticum timopheevii Zhuk. J Plant Physiol, 2013, 170: 330–337.

[28] Echeverry-Solarte M, Kumar A, Kianian S, Simsek S, Alamri M S, Mantovani E E, McClean P E, Deckard E L, Elias E, Schatz B, et al. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary× non-supernumerary spikelet genotypes. Theor Appl Genet, 2015, 128: 893–912.

[29] Prasad M, Kumar N, Kulwal P L, Röder M S, Balyan H S, Dhaliwal H S, Gupta P K. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet, 2003, 106: 659–667.

[30] Blanco A, Pasqualone A, Troccoli A, Di Fonzo N, Simeone R. Detection of grain protein content QTLs across environments in tetraploid wheats. Plant Mol Biol, 2002,48: 615–623.

[31] Olmos S, Distelfeld A, Chicaiza O, Schlatter A R, Fahima T, Echenique V, Dubcovsky J. Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet, 2003, 107: 1243–1251.

[32] Joppa L R, Du C H, Hart G E, Hareland G A. Mapping gene (s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci, 1997, 37: 1586–1589.

[33] Dholakia B B, Ammiraju J S S, Santra D K, Singh H, Katti M V, Lagu M D, Tamhankar S A, Rao V S, Gupta V S, Dhaliwal H S, et al. Molecular markers analysis of protein content using PCR based DNA markers in wheat. Biochem Genet, 2001, 39: 325–338.

[34] Turner A S, Bradburne R P, Fish L, Snape J W. New quantitative trait loci influencing grain texture and protein content in bread wheat. J Cereal Sci, 2004, 40: 51–60.

[35] Sun H Y, Lü J H, Fan Y D, Zhao Y, Kong F M, Li R J, Wang H G, Li S S. Quantitative trait loci (QTLs) for quality traits related to protein and starch in wheat. Prog Nat Sci, 2008, 18: 825–831.

[36] Guo Z F, Yang Q N, Huang F F, Zheng H J, Sang Z Q, Xu Y F, Zhang C, Wu K S, Tao J J, Prasanna B M, et al. Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip. Plant Commun, 2021, 2: 100230.

[37] Huang S, Zhang Y B, Ren H, Li X, Zhang X, Zhang Z Y, Zhang C L, Liu S J, Wang X T, Zeng Q D, et al. Epistatic interaction effect between chromosome 1BL (Yr29) and a novel locus on 2AL facilitating resistance to stripe rust in Chinese wheat Changwu 357–9. Theor Appl Genet, 2022, 135: 2501–2513.

[38] Qiu D, Huang J, Guo G H, Hu J H, Li Y H, Zhang H J, Liu H W, Yang L, Zhou Y, Yang B Z, et al. The Pm5e gene has no negative effect on wheat agronomic performance: evidence from newly established near-isogenic lines. Front Plant Sci, 2022, 13: 918559.

[39] 姚琦馥, 陈黄鑫, 周界光, 马瑞莹, 邓亮, 谭陈芯雨, 宋靖涵, 吕季娟, 马建. 基于16K SNP芯片的小麦株高QTL鉴定及其遗传分析. 中国农业科学, 2023, 56: 2237–2248. 

Yao Q F, Chen H X, Zhou J G, Ma R Y, Deng L, Tan C X Y, Song J H, Lyu J J, Ma J. QTL identification and genetic analysis of wheat plant height based on 16K SNP chip. Sci Agric Sin, 2023, 56: 2237–2248 (in Chinese with English abstract)

[1] YANG Hai-Yang, WU Lin-Xuan, LI Bo-Wen, SHI Han-Feng, YUAN Xi-Long, LIU Jin-Zhao, CAI Hai-Rong, CHEN Shi-Yi, GUO Tao, WANG Hui. OsWRI3, identified based on QTL mapping, regulates seed shattering in rice [J]. Acta Agronomica Sinica, 2025, 51(7): 1712-1724.
[2] HU Meng, SHA Dan, ZHANG Sheng-Rui, GU Yong-Zhe, ZHANG Shi-Bi, LI Jing, SUN Jun-Ming, QIU Li-Juan, LI Bin. QTL mapping and candidate gene screening for branch number in soybean [J]. Acta Agronomica Sinica, 2025, 51(7): 1747-1756.
[3] SHAO Shun-Wei, CHEN Zhuo, LAN Zhen-Dong, CAI Xing-Kui, ZOU Hua-Fen, LI Chen-Xi, TANG Jing-Hua, ZHU Xi, ZHANG Yu, DONG Jian-Ke, JIN Hui, SONG Bo-Tao. QTL mapping of tuber eye depth based on BSA-seq technique [J]. Acta Agronomica Sinica, 2025, 51(7): 1725-1735.
[4] ZHANG Jin-Ze, ZHOU Qing-Guo, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, LONG Xu, YAN Zhong-Bin, TIAN En-Tang. QTL mapping and candidate gene analysis of glucosinolate content in various tissues of Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(5): 1166-1177.
[5] ZHAN Zong-Bing, JIN Qi-Feng, LIU Di, LYU Ying-Chun, GUO Ying, ZHANG Xue-Ting, HU Meng-Xia, WANG Shang, YANG Fang-Ping. Molecular characterization and evaluation of important traits of landrace wheat Laomangmai in Gansu province, China [J]. Acta Agronomica Sinica, 2025, 51(3): 609-620.
[6] YONG Rui, HU Wen-Jing, WU Di, WANG Zun-Jie, LI Dong-Sheng, ZHAO Die, YOU Jun-Chao, XIAO Yong-Gui, WANG Chun-Ping. Identification and validation of quantitative trait loci for grain number per spike showing pleiotropic effect on thousand grain weight in bread wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 312-323.
[7] GUO Shu-Hui, PAN Zhuan-Xia, ZHAO Zhan-Sheng, YANG Liu-Liu, HUANG-FU Zhang-Long, GUO Bao-Sheng, HU Xiao-Li, LU Ya-Dan, DING Xiao, WU Cui-Cui, LAN Gang, LYU Bei-Bei, TAN Feng-Ping, LI Peng-Bo. Genetic analysis of a major fiber length locus on chromosome D11 of upland cotton [J]. Acta Agronomica Sinica, 2025, 51(2): 383-394.
[8] YANG Jing-Fa, YU Xin-Lian, YAO You-Hua, YAO Xiao-Hua, WANG Lei, WU Kun-Lun, LI Xin. QTL mapping of tiller angle in qingke (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2025, 51(1): 260-272.
[9] SHAO Mei-Hong, ZHAO Ling-Ling, CHENG Chu, CHENG Si-Ming, ZHU Shuang-Bing, ZHAI Lai-Yuan, CHEN Kai, XU Jian-Long. Screening, evaluation, and utilization of low nitrogen tolerance for the selected introgression lines in rice with Huanghuazhan background [J]. Acta Agronomica Sinica, 2024, 50(8): 1907-1919.
[10] LIU Shuang, LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte [J]. Acta Agronomica Sinica, 2024, 50(8): 1896-1906.
[11] HAN Li, TANG Sheng-Sheng, LI Jia, HU Hai-Bin, LIU Long-Long, WU Bin. Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats [J]. Acta Agronomica Sinica, 2024, 50(7): 1710-1718.
[12] BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683.
[13] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[14] ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450.
[15] ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!