Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Effects of Bacillus velezensis YCH92 on the rhizosphere microbial community and yield of cotton

CHEN Jia-Wei1,2,3,LIN Yan1,2,3,ZHANG Ming-Xing2,3,ZHOU Shi-Jing2,3,RAO Li-Qun1,ZHOU Chi1,2,3,*, LI Xin2,3,*   

  1. 1 College of Bioscience Science and Technology, Hunan Agricultural University, Changsha 410125, Hunan, China; 2 Hunan Microbiology Research Institute, Changsha 410125, Hunan, China; 3 Hunan Engineering Research Center on Excavation and Utilization of the Endophytic Microbial Resources of Plants, Changsha 410125, Hunan, China
  • Received:2025-01-15 Revised:2025-07-09 Accepted:2025-07-09 Published:2025-07-16
  • Supported by:
    This study was supported by the Science and Technology Innovation Project of Hunan Province (2023NK2015) and the Policy-Oriented Project Science and Technology Aid to Xinjiang and Tibet (2024WK4003).

Abstract:

To explore the potential functions of endophytic Bacillus velezensis YCH92 and its influence on the structure of the cotton rhizosphere microbial community, as well as to improve the soil microenvironment and enhance cotton yield, this study conducted whole-genome sequencing, gene function annotation, and comparative genomic analysis. The effects of YCH92 on the physicochemical properties of rhizosphere soil, cotton agronomic traits, and yield were systematically investigated. In addition, high-throughput sequencing was employed to assess changes in microbial community structure following YCH92 application. The results showed that strain YCH92 possesses the abilities to solubilize phosphate, produce amylase and siderophores, and harbors numerous genes involved in the biosynthesis of antimicrobial compounds. In field experiments, application of YCH92 significantly increased soil organic matter, hydrolyzable nitrogen, available phosphorus, and available potassium, while reducing soil pH. A 200-fold dilution of YCH92 also enhanced microbial diversity and richness in the rhizosphere. Compared with the untreated control, YCH92 treatment increased the relative abundance of Actinobacteriota and decreased that of Acidobacteria. At the genus level, it promoted the abundance of Sphingomonas and Knoellia, while reducing that of Haliangium. Application of YCH92 also significantly improved boll number per plant, boll weight, and seed cotton yield. Specifically, the 100-fold dilution increased boll number, boll weight, and seed cotton yield by 17.3%, 6.6%, and 25.0%, respectively, while the 200-fold dilution resulted in increases of 15.5%, 6.7%, and 23.2%. These findings indicate that Bacillus velezensis YCH92 can enhance soil quality and promote cotton yield, offering a theoretical basis for sustainable cotton cultivation and the green, efficient development of the cotton industry.

Key words: cotton, Bacillus velezensis, endophytes, whole genome, microbial diversity

[1] 马乾. “十四五期间新疆棉花产业发展与棉花公证检验的建议. 中国纤检, 2023, (3): 54–55.
Ma Q. Suggestions on the development of cotton industry in Xinjiang and cotton notarization and inspection during the 14th Five-Year Plan period. Chin Fiber Inspect, 2023, (3): 54–55 (in Chinese with English abstract).

[2] 黄东风, 王果, 李卫华, 邱孝煊. 菜地土壤氮磷面源污染现状、机制及控制技术. 应用生态学报, 2009, 20: 991–1001.
Huang D F, Wang G, Li W H, Qiu X X. Present status, mechanisms, and control techniques of nitrogen and phosphorus non-point source pollution from vegetable fields. Chin J Appl Ecol, 2009, 20: 991–1001 (in Chinese with English abstract).

[3] Lalloo R, Maharajh D, Görgens J, Gardiner N. A downstream process for production of a viable and stable Bacillus cereus aquaculture biological agent. Appl Microbiol Biotechnol, 2010, 86: 499–508.

[4] 杨明国, 刘淑雯, 芦俊佳, 马云强, 古旭. 两株内生真菌对多年生黑麦草及早熟禾抗旱性的影响. 北方园艺, 2024, (21): 52–60.
Yang M G, Liu S W, Lu J J, Ma Y Q, Gu X. Effects of two endophytic fungi on drought resistance of Lolium perenne and Poa pratensis. North Hortic, 2024, (21): 52–60 (in Chinese with English abstract).

[5] 王林林, 腊贵晓, 苏秀红, 杨林林, 初雷霞, 郭军旗, 练从龙, 张宝, 董诚明, 陈随清, . 基于基因组信息挖掘的内生细菌Kocuria rosea促进地黄生长的机制研究. 中国中药杂志, 2024, 49: 6119–6128.
Wang L L, La G X, Su X H, Yang L L, Chu L X, Guo J Q, Lian C L, Zhang B, Dong C M, Chen S Q, et al. Genomic information mining reveals Rehmannia glutinosa growth-promoting mechanism of endophytic bacterium Kocuria rosea. China J Chin Mater Med, 2024, 49: 6119–6128 (in Chinese with English abstract).

[6] 李社增, 鹿秀云, 马平, 刘杏忠, Huang H C. 棉花黄萎病生防细菌NCD-2抑菌物质提取初步研究. 棉花学报, 2004, 16(1): 62–63.
Li S Z, Lu X Y, Ma P, Liu X Z, Huang C. Isolation and partial purification of an extracellular metabolite from a Bacillus subtilis NCD-2 strain against Verticillium dahliae. Acta Gossypii Sin, 2004, 16(1): 62–63 (in Chinese with English abstract).

[7] Bacon C W, Yates I E, Hinton D M, Meredith F. Biological control of Fusarium moniliforme in maize. Environ Health Perspect, 2001, 109: 325–332.

[8] 陈雨薇, 王喜刚, 郭成瑾, 沈瑞清, 刘东川. 贝莱斯芽胞杆菌GZ8-6对马铃薯根际土壤酶活性的影响及促生作用. 植物保护, 2024, 50(1): 48–55.
Chen Y W, Wang X G, Guo C J, Shen R Q, Liu D C. Effects of Bacillus velezensis GZ8-6 on the enzyme activities in potato rhizosphere soil and potato growth. Plant Prot, 2024, 50(1): 48–55 (in Chinese with English abstract).

[9] 朱芝宜, 李培根, 陆晓彤, 贺菲雪, 王中华, 李晓刚, 董彩霞, 徐阳春, 沈其荣. 假单胞菌与褐藻寡糖协同提高梨果实产量及品质. 植物营养与肥料学报, 2024, 30: 1964–1973.
Zhu Z Y, Li P G, Lu X T, He F X, Wang Z H, Li X G, Dong C X, Xu Y C, Shen Q R. Synergistic effects of Pseudomonas CD1 and brown algal oligosaccharides on pear fruit yield and quality. J Plant Nutr Fert, 2024, 30: 1964–1973 (in Chinese with English abstract).

[10] 任津莹, 陈鹏. 一株贝莱斯芽孢杆菌的分离鉴定及其生物学特性研究. 饲料研究, 2022, 45(2): 79–82.
Ren J Y, Chen P. Isolation, identification and biological characteristics of a Bacillus Vé lez. Feed Res, 2022, 45(2): 79–82 (in Chinese).

[11] 侯莹莹, 胡小梅. 3株玉米根际解磷菌筛选鉴定及促生作用研究. 东北农业大学学报, 2024, 55(5): 46–55.
Hou Y Y, Hu X M. Screening and identification of three strains of phosphate-solubilizing bacteria from maize rhizosphere and their roles in plant growth promoting effect. J Northeast Agric Univ, 2024, 55(5): 46–55 (in Chinese with English abstract).

[12] 刘丽辉, 彭桂香, 黄淑芬, 王祖城, 庭友卫, 谭志远. 落地生根内生固氮菌多样性和促生特性. 微生物学通报, 2019, 46: 2538–2547.
Liu L H, Peng G X, Huang S F, Wang Z C, Ting Y W, Tan Z Y. Diversity and growth promotion of endophytic diazotrophic bacteria isolated from Bryophyllum pinnatum. Microbiol China, 2019, 46: 2538–2547 (in Chinese with English abstract).

[13] 邵嘉朱, 吕雯, 廖鑫琳, 袁歆瑜, 宋振, 蒋冬花. 大豆根际促生菌的分离、鉴定及其耐盐促生作用. 中国农业科学, 2024, 57: 4248–4263.
Shao J Z, Lyu W, Liao X L, Yuan X Y, Song Z, Jiang D H. Isolation and identification of soybean rhizosphere growth-promoting bacteria and their salt tolerance and growth-promoting effects. Sci Agric Sin, 2024, 57: 4248–4263 (in Chinese with English abstract).

[14] 鲍士旦. 土壤农化分析(3). 北京: 中国农业出版社, 2000.
Bao S D. Soil and Agricultural Chemistry Analysis, 3rd ed. Beijing: China Agriculture Press, 2000 (in Chinese).

[15] Mbuthia L W, Acosta-Martínez V, DeBruyn J, Schaeffer S, Tyler D, Odoi E, Mpheshea M, Walker F, Eash N. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: implications for soil quality. Soil Biol Biochem, 2015, 89: 24–34.

[16] 沈仁芳, 赵学强. 土壤微生物在植物获得养分中的作用. 生态学报, 2015, 35: 6584–6591.
Shen R F, Zhao X Q. Role of soil microbes in the acquisition of nutrients by plants. Acta Ecol Sin, 2015, 35: 6584–6591 (in Chinese with English abstract).

[17] 唐岷宸, 李文静, 宋天顺, 谢婧婧. 一株高效解磷菌的筛选及其解磷效果验证. 生物技术通报, 2020, 36(6): 102–109.
Tang M C, Li W J, Song T S, Xie J J. Screening of a highly efficient phosphate-solubilizing bacterium and validation of its phosphate-solubilizing effect. Biotechnol Bull, 2020, 36(6): 102–109 (in Chinese with English abstract).

[18] 陈忠男, 王志刚, 徐伟慧. 贝莱斯芽胞杆菌WB对西瓜植株的促生效应和机制. 农业生物技术学报, 2024, 32: 2228–2242. 
Chen Z N, Wang Z G, Xu W H. Promoting promoting effects and mechanism of Bacillus velezensis WB on watermelon (Citrullus lanatus) plants. J Agric Biotechnol, 2024, 32: 2228–2242 (in Chinese with English abstract).

[19] 王琦, 陈秀玲, 王傲雪. 一株具有促生作用的生防细菌YN-2A的分离、鉴定及全基因组测序分析. 微生物学通报, 2024, 51: 2986–3003.
Wang Q, Chen X L, Wang A X. A biocontrol bacterium YN-2A with growth-promoting effect: isolation, identification, and genome sequencing. Microbiol China, 2024, 51: 2986–3003 (in Chinese with English abstract).

[20] Liu Y N, Lu J, Sun J, Lu F X, Bie X M, Lu Z X. Membrane disruption and DNA binding of Fusarium graminearum cell induced by C16-Fengycin A produced by Bacillus amyloliquefaciens. Food Control, 2019, 102: 206–213.

[21] 任鹏举, 谢永丽, 张岩, 伍辉军, 高学文. 枯草芽孢杆菌OKB105产生的surfactin防治烟草花叶病毒病及其机理研究. 中国生物防治学报, 2014, 30(2): 216–221.
Ren P J, Xie Y L, Zhang Y, Wu H J, Gao X W. Effect and mechanism of controlling TMV disease on tobacco by surfactin produced by Bacillus subtilis OKB105. Chin J Biol Control, 2014, 30(2): 216–221 (in Chinese with English abstract).

[22] Ali S A M, Sayyed R Z, Mir M I, Khan M Y, Hameeda B, Alkhanani M F, Haque S, Mohammad Al Tawaha A R, Poczai P. Induction of systemic resistance in maize and antibiofilm activity of surfactin from Bacillus velezensis MS20. Front Microbiol, 2022, 13: 879739.

[23] Chowdhury S P, Hartmann A, Gao X W, Borriss R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42-a review. Front Microbiol, 2015, 6: 780.

[24] 宋以玲, 于建, 陈士更, 肖承泽, 李玉环, 苏秀荣, 丁方军. 复合微生物菌剂对棉花生理特性及根际土壤微生物和化学性质的影响. 土壤, 2019, 51: 477–487.
Song Y L, Yu J, Chen S G, Xiao C Z, Li Y H, Su X R, Ding F J. Effects of complex microbial agent on cotton physiological characteristics, microorganism and physicochemical properties in rhizosphere soil. Soils, 2019, 51: 477–487 (in Chinese with English abstract).

[25] 中国农业科学院棉花研究所. 中国棉花栽培学. 上海: 上海科学技术出版社, 1983.

Cotton Research Institute. Chinese Academy of Agricultural Sciences. Cotton Cultivation in China. Shanghai: Shanghai Scientific & Technical Publishers, 1983 (in Chinese).

[26] 周桔, 雷霆. 土壤微生物多样性影响因素及研究方法的现状与展望. 生物多样性, 2007, 15: 306–311.
Zhou J, Lei T. Review and prospects on methodology and affecting factors of soil mi-crobial diversity. Biodivers Sci, 2007, 15: 306–311 (in Chinese with English abstract).

[27] Chamberlain L A, Bolton M L, Cox M S, Suen G, Conley S P, Ané J M. Crop rotation, but not cover crops, influenced soil bacterial community composition in a corn-soybean system in southern Wisconsin. Appl Soil Ecol, 2020, 154: 103603.

[28] 王超, 李刚, 黄思杰, 张弛, 田伟, 田然, 王磊, 席运官. 枯草芽胞杆菌菌肥对有机冬瓜根区土壤微生态的影响. 微生物学通报, 2019, 46: 563–576.
Wang C, Li G, Huang S J, Zhang C, Tian W, Tian R, Wang L, Xi Y G. Effect of Bacillus subtilis microbial fertilizer on root-zone soil microbial ecology of organic Chinese watermelon. Microbiol China, 2019, 46: 563–576 (in Chinese with English abstract).

[29] 乔清华, 张传云, 袁哲诚, 王芙蓉, 张军. 多年连作土壤中棉花根际细菌群落结构及其动态. 棉花学报, 2018, 30(2): 128–135.
Qiao Q H, Zhang C Y, Yuan Z C, Wang F R, Zhang J. Dynamics of cotton rhizosphere bacterial community structure in cotton continuous cropping field soil. Cotton Sci, 2018, 30(2): 128–135 (in Chinese with English abstract).

[30] 曲远航, 刘天聪, 鹿秀云, 李社增, 郭庆港, 马平. 菌糠对棉花黄萎病及棉花根际微生物群落组成的影响. 棉花学报, 2023, 35: 274–287.
Qu Y H, Liu T C, Lu X Y, Li S Z, Guo Q G, Ma P. Effects of spent mushroom substrate on cotton Verticillium wilt and the cotton rhizosphere microbiome. Cotton Sci, 2023, 35: 274–287 (in Chinese with English abstract).

[31] Fierer N, Bradford M A, Jackson R B. Toward an ecological classification of soil bacteria. Ecology, 2007, 88: 1354–1364.

[32] Sims A, Zhang Y Y, Gajaraj S, Brown P B, Hu Z Q. Toward the development of microbial indicators for wetland assessment. Water Res, 2013, 47: 1711–1725.

[33] 吕宁, 石磊, 刘海燕, 司爱君, 李全胜, 张国丽, 陈云. 生物药剂滴施对棉花黄萎病及根际土壤微生物数量和多样性的影响. 应用生态学报, 2019, 30: 602–614.
Lyu N, Shi L, Liu H Y, Si A J, Li Q S, Zhang G L, Chen Y. Effects of biological agent dripping on cotton Verticillium wilt and rhizosphere soil microorganism. Chin J Appl Ecol, 2019, 30: 602–614 (in Chinese with English abstract).

[34] 沙月霞, 黄泽阳, 李云翔, 赵沛. 生物菌剂对土壤微生物群落结构和功能的影响. 农业环境科学学报, 2022, 41: 2752–2762.
Sha Y X, Huang Z Y, Li Y X, Zhao P. Impact of microbial agents on the structure and function of the soil microbial community. J Agro-Environ Sci, 2022, 41: 2752–2762 (in Chinese with English abstract).

[35] Khodadad C L M, Zimmerman A R, Green S J, Uthandi S, Foster J S. Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol Biochem, 2011, 43: 385–392.

[36] 王炫栋, 宋振, 兰赫婷, 江樱姿, 齐文杰, 刘晓阳, 蒋冬花. 杨梅园土壤优势放线菌的分离及其防病促生功能. 中国农业科学, 2023, 56: 275–286.
Wang X D, Song Z, Lan H T, Jiang Y Z, Qi W J, Liu X Y, Jiang D H. Assessment of disease prevention, growth promotion, and inhibition mechanisms by inter-rhizosphere isolated PGPR Actinomycetes from myrica rubra. Sci Agric Sin, 2023, 56: 275–286 (in Chinese with English abstract).

[37] Liu B R, Jia G M, Chen J, Wang G. A review of methods for studying microbial diversity in soils. Pedosphere, 2006, 16: 18–24.

[38] 刘佳琪. 外施功能菌剂对烟草抗低温胁迫及促生作用研究. 湖南农业大学硕士学位论文, 湖南长沙, 2022.
Liu J Q. Effects of External Application of Functional Bacteria on Tobacco Resistance to Low Temperature Stress and Growth Promotion. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2022 (in Chinese with English abstract).

[39] 袁宗胜. 复合微生物菌剂对毛竹土壤细菌群落结构的影响. 福建农业学报, 2024, 39: 438–447.
Yuan Z S. Soil microbiome at Phyllostachys edulis forest affected by application of bioagent. Fujian J Agric Sci, 2024, 39: 438–447 (in Chinese with English abstract).

[40] Asaf S, Numan M, Khan A L, Al-Harrasi A. Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Crit Rev Biotechnol, 2020, 40: 138–152.

[41] Li W L, Zhang Z Z, Li D P, Guo C Y, Li Y J, Yang M, Shi X J, Zhang Y Q. Effects of three nitrification inhibitors on the nitrogen conversion in purple soil and its effect on the nitrogen uptake of Citrus seedlings. Agric Sci, 2018, 9: 655–669.

[42] Thamdrup B. New pathways and processes in the global nitrogen cycle. Annu Rev Ecol Evol Syst, 2012, 43: 407–428.

[43] Coskun D, Britto D T, Shi W M, Kronzucker H J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat Plants, 2017, 3: 17074.

[44] 刘国辉, 买文选, 田长彦. 施用有机肥对盐碱土的改良效果: Meta分析. 农业资源与环境学报, 2023, 40(1): 86–96.
Liu G H, Mai W X, Tian C Y. Effects of organic fertilizer application on the improvement of saline soils: Meta analysis. J Agric Res Environ, 2023, 40(1): 86–96 (in Chinese with English abstract).

[45] Abdel-Fattah W R, Chen Y H, Eldakak A, Marion Hulett F. Bacillus subtilis phosphorylated PhoP: direct activation of the E(sigma)A- and repression of the E(sigma)E-responsive phoB-PS+V promoters during pho response. J Bacteriol, 2005, 187: 5166–5178.

[46] Vadivelu V M, Keller J, Yuan Z. Free ammonia and free nitrous acid inhibition on the anabolic and catabolic processes of Nitrosomonas and Nitrobacter. Water Sci Technol, 2007, 56: 89–97.

[47] 保善存, 吕亮雨, 龙启辰, 樊光辉. 不同促生菌剂对柴达木枸杞土壤生物学特性的影响. 江苏农业科学, 2023, 51(1): 168–175.
Bao S C, Lyu L Y, Long Q C, Fan G H. Effects of different growth-promoting microbial agents on soil biological characteristics of Lycium barbarum cultivated in Qaidam. Jiangsu Agric Sci, 2023, 51(1): 168–175 (in Chinese with English abstract).

[48] 于鲲鹏, 张焕, 谷雅文, 赵孜乾, 周晓辉. 枯草芽孢杆菌代谢产物对香菇生长的影响. 北方园艺, 2021, (1): 132–136.
Yu K P, Zhang H, Gu Y W, Zhao Z Q, Zhou X H. Effects of metabolites from Bacillus subtilis on the growth of Lentinula edodes. North Hortic, 2021, (1): 132–136 (in Chinese with English abstract).

[49] 罗林毅, 陈瑞杰, 阮向阳, 任晓辉, 曲奥, 苏海婷, 冶军. 微生物菌剂对滴灌棉田土壤养分和棉花产量及品质的影响. 新疆农业科学, 2024, 61(1): 26–33.
Luo L Y, Chen R J, Ruan X Y, Ren X H, Qu A, Su H T, Ye J. Effects of microbial agents on soil nutrients, cotton yield and quality in drip irrigation cotton fields. Xinjiang Agric Sci, 2024, 61(1): 26–33 (in Chinese with English abstract).

[50] Huang C M, Chen W C, Lin S H, Wang Y N, Shen F T. Exploration of root-associated bacteria from the medicinal plant Platycodon grandiflorum. Microbes Environ, 2019, 34: 413–420.

[51] 刘健, 李俊, 葛诚. 微生物肥料作用机理的研究新进展. 微生物学杂志, 2001, 21(1): 33–36.
Liu J, Li J, Ge C. Advance in role mechanism of microbial fertilizer. J Microbiol, 2001, 21(1): 33–36 (in Chinese with English abstract).

[52] 邱媛媛. 两株芽孢杆菌提高棉花黄萎病抗性与促生作用的机制的研究. 南京农业大学硕士学位论文, 江苏南京, 2024.
Qiu Y Y. Studies on Mechanisms of Two Bacillus Strains in Improving Resistance to Verticillium Wilt and Promoting Growth of Cotton. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2024 (in Chinese with English abstract)

[1] GUO Dong-Cai, LYU Tao, CAI Yong-Sheng, MAI WU-LU-DA·AI He-Mai-Ti, CHEN Quan-Jia, QU Yan-Ying, ZHENG Kai. Meta-analysis of QTL and identification of candidate genes for fiber quality in cotton [J]. Acta Agronomica Sinica, 2025, 51(6): 1445-1466.
[2] WANG Ya-Wen, QI Zheng-Yang, YOU Jia-Qi, NIE Xin-Hui, CAO Juan, YANG Xi-Yan, TU Li-Li, ZHANG Xian-Long, WANG Mao-Jun. Preparation of cotton 60K functional locus gene chip and its application to genetic research [J]. Acta Agronomica Sinica, 2025, 51(5): 1178-1188.
[3] XIE Zhang-Shu, XIE Xue-Fang, TU Xiao-Ju, LIU Ai-Yu, DONG He-Zhong, ZHOU Zhong-Hua. Research progress in phytohormone regulation of square and boll shedding in cotton [J]. Acta Agronomica Sinica, 2025, 51(1): 1-29.
[4] XIN Ming-Hua, MI Ya-Di, WANG Guo-Ping, LI Xiao-Fei, LI Ya-Bing, DONG He-Lin, HAN Ying-Chun, FENG Lu. Effect of row spacing configuration and density regulation on dry matter production and yield in cotton [J]. Acta Agronomica Sinica, 2025, 51(1): 221-232.
[5] KUANG Bo-Wen, WEI Ni, LIU Jin-Dian, CHEN Mei-Yan, MAO Xing-Jie, DUAN Wei-Xing, YANG Xi-Ping. Development of SSR markers and database based on genomes of sugarcane and its relatives [J]. Acta Agronomica Sinica, 2025, 51(1): 103-116.
[6] LI Chao, FU Xiao-Qiong. Comprehensive evaluation of regional trial varieties of medium mature hybrid cotton in the Yellow River Basin based on GYT biplot [J]. Acta Agronomica Sinica, 2025, 51(1): 30-43.
[7] AI Sha, LI Sha, FANG Zhi-Wei, LI Lun, LI Tian-Tian, GAO Li-Fen, CHEN Li-Hong, XIAO Hua-Feng, WAN Ren-Jing, YAN Duo-Zi, WU Xing-Ting, PENG Hai, HAN Rui-Xi, ZHOU Jun-Fei. Development and application of cotton MNP marker for fingerprint cons- truction [J]. Acta Agronomica Sinica, 2024, 50(9): 2267-2278.
[8] LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502.
[9] XU Ze, WU Xin-Ling, LIU Zhen-Yu, LI Han-Jia, LENG Xin-Hua, WU Tian-Fan, CHEN Yuan, ZHANG Xiang, CHEN De-Hua. Effects of planting density with nitrogen rate on regulation of nitrogen utilization in summer direct seeded cotton [J]. Acta Agronomica Sinica, 2024, 50(6): 1584-1596.
[10] LI Hang, LIU Li, HUANG Qian, LIU Wen-Hao, SI Ai-Jun, KONG Xian-Hui, WANG Xu-Wen, ZHAO Fu-Xiang, MEI Yong-Jun, YU Yu. Identification and screening of salt tolerance of cotton germplasm resources at germination stage [J]. Acta Agronomica Sinica, 2024, 50(5): 1147-1157.
[11] LE Yu, WANG Tao, ZHANG Xian-Long, LIN Zhong-Xu. Screening of regeneration capacity and genetic transformation efficiency in recombinant inbred lines of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(5): 1172-1180.
[12] LIU Cheng-Min, MEN Ya-Qi, QIN Du-Lin, YAN Xiao-Yu, ZHANG Le, MENG Hao, SU Xun-Ya, SUN Xue-Zhen, SONG Xian-Liang, MAO Li-Li. Effects of nitrogen application rate on cotton yield and nitrogen utilization under long-term straw return to the field [J]. Acta Agronomica Sinica, 2024, 50(4): 1043-1052.
[13] DAI Yu-Yang, YUE Ye, LIU Zhen-Yu, HE Run, LIU Yu-Ting, ZHANG Xiang, CHEN De-Hua, CHEN Yuan. Effects of low temperature on the expression of insecticidal protein in Bt cotton fibers and its physiological mechanism [J]. Acta Agronomica Sinica, 2024, 50(3): 709-720.
[14] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[15] LI Zhi-Kun, JIA Wen-Hua, ZHU Wei, LIU Wei, MA Zong-Bin. Effects of nitrogen fertilizer and DPC combined application on temporal distribution of cotton yield and fiber quality [J]. Acta Agronomica Sinica, 2024, 50(2): 514-528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!