[1] 李顺国, 刘斐, 刘猛, 程汝宏, 夏恩君, 刁现民. 中国谷子产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 459–470.
Li S G, Liu F, Liu M, Cheng R H, Xia E J, Diao X M. Current status and future prospective of foxtail millet production and seed industry in China. Sci Agric Sin, 2021, 54: 459–470 (in Chinese with English abstract).
[2] Lu H Y, Zhang J P, Liu K B, Wu N Q, Li Y M, Zhou K S, Ye M L, Zhang T Y, Zhang H J, Yang X Y, et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci USA, 2009, 106: 7367–7372.
[3] 姚德贵, 刘春, 苗雨沛, 刘善峰, 周放, 赵灿. 1961–2020年河南省夏季极端降水异常分布特征及其与大气环流和海温的关系. 气象与减灾研究, 2024, 47(2): 81–94.
Yao D G, Liu C, Miao Y P, Liu S F, Zhou F, Zhao C. Spatiotemporal characteristics of 1961–2020 summer extreme precipitation anomaly in Henan province and their relationships with the atmospheric circulation and SST. Meteor Disaster Red Res, 2024, 47(2): 81–94 (in Chinese with English abstract).
[4] 杨慧杰, 原向阳, 祁祥, 郭平毅, 郭大辛, 董淑琦, 温银元, 张丽光. 谷子对拔节期弱光胁迫的光合生理响应. 核农学报, 2017, 31: 386–393.
Yang H J, Yuan X Y, Qi X, Guo P Y, Guo D X, Dong S Q, Wen Y Y, Zhang L G. Photosynthetic physiological response of foxtail millet to weak light stress at jointing-stage. J Nucl Agric Sci, 2017, 31: 386–393 (in Chinese with English abstract).
[5] 刘鑫, 田岗, 王玉文, 刘永忠, 李会霞, 余爱丽, 成锴, 王振华, 刘红, 李万星, 等. 遮光对谷子植株农艺性状及干物质量的影响. 东北农业科学, 2023, 48(3): 10–14.
Liu X, Tian G, Wang Y W, Liu Y Z, Li H X, Yu A L, Cheng K, Wang Z H, Liu H, Li W X, et al. Effects of shading on agronomic characters and dry matter quality of millet plants. J Northeast Agric Sci, 2023, 48(3): 10–14 (in Chinese with English abstract).
[6] 时丽冉, 郝洪波, 崔海英, 李明哲. 遮光对谷子光合性能及快速叶绿素荧光动力学特征的影响. 作物杂志, 2019, (5): 125–128.
Shi L R, Hao H B, Cui H Y, Li M Z. Effects of shading on photosynthetic characteristics and rapid chlorophyll fluorescence kinetic characteristics of foxtail millet. Crops, 2019, (5): 125–128 (in Chinese with English abstract).
[7] 祁祥. 遮阴对谷子生理特性及产量的影响. 山西农业大学硕士学位论文, 山西太谷, 2013.
Qi X. Effect of Shading on Physiological Characteristics and Yield in Millet. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2013 (in Chinese with English abstract).
[8] 田岗, 刘鑫, 王玉文, 刘永忠, 李会霞, 成锴, 王振华, 刘红. 遮光处理对谷子农艺性状、小米品质及蒸煮特性的影响. 中国农业科技导报, 2021, 23(11): 47–54.
Tian G, Liu X, Wang Y W, Liu Y Z, Li H X, Cheng K, Wang Z H, Liu H. Effects of shading treatment on millet agronomic traits, millet quality and cooking characteristics. J Agric Sci Technol, 2021, 23(11): 47–54 (in Chinese with English abstract).
[9] 李素英, 刘丹, 崔燕娇, 张静, 王凤春, 刘正理. 谷栗立体套种下谷子耐荫性评价方法的建立及应用. 西北农林科技大学学报(自然科学版), 2024, 52(8): 49–59.
Li S Y, Liu D, Cui Y J, Zhang J, Wang F C, Liu Z L. Establishment and application of evaluation method for shade tolerant of foxtail millet under stereo interplanting of foxtail millet and chestnut tree. J Northwest A&F Univ (Nat Sci Edn), 2024, 52(8): 49–59 (in Chinese with English abstract).
[10] 伍龙梅. 遮阴和外源调节物质对粳稻茎秆抗倒伏性的影响及其生理和分子机理. 南京农业大学博士学位论文, 江苏南京, 2017.
Wu L M. Impacts of Shading and Exogenous Regulating Substances on Stem Lodging Resistance of Japonica Rice and its Physiological and Molecular Mechanisms. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2017 (in Chinese with English abstract).
[11] 黄小龙, 张艳芳, 郭树春, 邢丽南, 葛明然, 张晓蒙, 张勇, 霍秀文. 光强对山药叶片结构和光合特性的影响. 植物生理学报, 2024, 60: 808–822.
Huang X L, Zhang Y F, Guo S C, Xing L N, Ge M R, Zhang X M, Zhang Y, Huo X W. Effects of light intensities on leaf structure and photosynthetic characteristics of yam. Plant Physiol J, 2024, 60: 808–822 (in Chinese with English abstract).
[12] An J, Wei X L, Huo H H. Transcriptome analysis reveals the accelerated expression of genes related to photosynthesis and chlorophyll biosynthesis contribution to shade-tolerant in Phoebe bournei. BMC Plant Biol, 2022, 22: 268.
[13] 张霞, 李国明, 李斌华, 陈燕, 陆引罡, 刘丽. 基于转录组测序的上部烟叶遮阴响应解析. 农业生物技术学报, 2023, 31: 968–978.
Zhang X, Li G M, Li B H, Chen Y, Lu Y G, Liu L. Analysis of shade response in upper tobacco (Nicotiana tabacum) leaves based on transcriptome sequencing. J Agric Biotechnol, 2023, 31: 968–978 (in Chinese with English abstract).
[14] 徐汝聪, 李丹丹, 吕东, 张春龙, 杨宏, 张健博, 罗欢, 金寿林, 李娟, 谭学林. 水稻OsSUTs基因对弱光胁迫的应答分析. 分子植物育种, 2021, 19: 697–704.
Xu R C, Li D D, Lyu D, Zhang C L, Yang H, Zhang J B, Luo H, Jin S L, Li J, Tan X L. Analysis of rice OsSUTs gene response to low light stress. Mol Plant Breed, 2021, 19: 697–704 (in Chinese with English abstract).
[15] Shriram V, Kumar V, Devarumath R M, Khare T S, Wani S H. microRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci, 2016, 7: 817.
[16] Gommers C M M, Keuskamp D H, Buti S, van Veen H, Koevoets I T, Reinen E, Voesenek L A C J, Pierik R. Molecular profiles of contrasting shade response strategies in wild plants: differential control of immunity and shoot elongation. Plant Cell, 2017, 29: 331–344.
[17] Yang C W, Li L. Hormonal regulation in shade avoidance. Front Plant Sci, 2017, 8: 1527.
[18] Lorrain S, Allen T, Duek P D, Whitelam G C, Fankhauser C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J, 2008, 53: 312–323.
[19] 方希林, 杨漫, 王鑫, 黄沆, 肖楠, 贺治洲, 王悦. 水稻叶色突变体ygr的遗传分析与基因定位. 核农学报, 2017, 31: 2096–2102.
Fang X L, Yang M, Wang X, Huang H, Xiao N, He Z Z, Wang Y. Genetic analysis and gene mapping of rice leaf color mutant ygr. J Nucl Agric Sci, 2017, 31: 2096–2102 (in Chinese with English abstract).
[20] Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol, 2001, 42: 1265–1273.
[21] Pandolfini T, Gabbrielli R, Comparini C. Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environ, 1992, 15: 719–725.
[22] 常硕其, 粟琳, 欧阳翔. 水稻产量提高与光合作用之间的关系. 生命科学, 2024, 36: 1305–1310.
Chang S Q, Su L, Ouyang X. The relationship between the enhancement of rice grain yield and photosynthesis. Chin Bull Life Sci, 2024, 36: 1305–1310 (in Chinese with English abstract).
[23] 孙智超, 张吉旺. 弱光胁迫影响玉米产量形成的生理机制及调控效应. 作物学报, 2023, 49: 12–23.
Sun Z C, Zhang J W. Physiological mechanism and regulation effect of low light on maize yield formation. Acta Agron Sin, 2023, 49: 12–23 (in Chinese with English abstract).
[24] Yuan X Y, Zhang L G, Huang L, Qi X, Wen Y Y, Dong S Q, Song X E, Wang H F, Guo P Y. Photosynthetic and physiological responses of foxtail millet (Setaria italica L.) to low-light stress during grain-filling stage. Photosynthetica, 2017, 55: 491–500.
[25] 李秀, 李刘龙, 李慕嵘, 尹立俊, 王小燕. 不同小麦品种旗叶叶绿素含量、叶片显微结构及产量对花后遮光的响应机制. 作物学报, 2023, 49: 286–294.
Li X, Li L L, Li M R, Yin L J, Wang X Y. Effects of shading postanthesis on flag leaf chlorophyll content, leaf microstructure and yield of different wheat varieties. Acta Agron Sin, 2023, 49: 286–294 (in Chinese with English abstract).
[26] Gong W Z, Jiang C D, Wu Y S, Chen H H, Liu W Y, Yang W Y. Tolerance vs. avoidance: two strategies of soybean (Glycine max) seedlings in response to shade in intercropping. Photosynthetica, 2015, 53: 259–268.
[27] 孙欣欣. 遮阴对胡桃楸和紫椴苗木形态和生理的影响. 东北林业大学硕士学位论文, 黑龙江哈尔滨, 2013.
Sun X X. Effect of Shading on Morphology and Physiology in Juglans mandshurica and Tilia amurensis Seedlings. MS Thesis of Northeast Forestry University, Harbin, Heilongjiang, China, 2013 (in Chinese with English abstract).
[28] Yang J, Qiao H H, Wu C, Huang H, Nzambimana C, Jiang C, Wang J C, Tang D B, Zhong W R, Du K, et al. Physiological and transcriptome responses of sweet potato [Ipomoea batatas (L.) lam] to weak-light stress. Plants, 2024, 13: 2214.
[29] 李素英, 崔燕娇, 张静, 刘正理. 耐荫谷子杂交种的创制及其耐荫生理机制研究. 中国农学通报, 2024, 40(14): 23–31.
Li S Y, Cui Y J, Zhang J, Liu Z L. Shade-tolerant foxtail millet hybrids [Setaria italica(L.) P. beauv.]: creation and shade-tolerant physiological mechanism study. Chin Agric Sci Bull, 2024, 40(14): 23–31 (in Chinese with English abstract).
[30] Gu J F, Zhou Z X, Li Z K, Chen Y, Wang Z Q, Zhang H. Rice (Oryza sativa L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. Field Crops Res, 2017, 200: 58–70.
[31] 杜成凤, 李潮海, 刘天学, 赵亚丽. 遮阴对两个基因型玉米叶片解剖结构及光合特性的影响. 生态学报, 2011, 31: 6633–6640.
Du C F, Li C H, Liu T X, Zhao Y L. Response of anatomical structure and photosynthetic characteristics to low light stress in leaves of different maize genotypes. Acta Ecol Sin, 2011, 31: 6633–6640 (in Chinese with English abstract).
[32] 董杰, 陈新新, 杨倩, 张怀渝, 陈洋尔. 高光、水分和盐胁迫下小麦光合特性和抗氧化酶系统的比较. 麦类作物学报, 2018, 38: 315–322.
Dong J, Chen X X, Yang Q, Zhang H Y, Chen Y E. Effects of high light, water and salt stresses on photosynthetic characteristics and antioxidant enzyme system in wheat. J Triticeae Crops, 2018, 38: 315–322 (in Chinese with English abstract).
[33] 张永强, 雷钧杰, 陈传信, 徐其江, 聂石辉, 段留生. 遮阴程度对小麦旗叶内源激素含量、抗氧化酶活性及光合特性的影响. 麦类作物学报, 2024, 44: 1334–1341.
Zhang Y Q, Lei J J, Chen C X, Xu Q J, Nie S H, Duan L S. effects of shading degree on endogenous hormone content, antioxidant enzyme activity and photosynthetic characteristics of wheat flag leaves. J Triticeae Crops, 2024, 44: 1334–1341 (in Chinese with English abstract).
[34] 陈泳纬, 吴永兵, 袁华恩, 阳苇丽, 何正川, 赵俊杰, 董涵, 张宇, 赵铭钦. 光照强度对雪茄烟叶光合特性、抗氧化特性及品质的影响. 西南农业学报, 2023, 36: 2175–2182.
Chen Y W, Wu Y B, Yuan H E, Yang W L, He Z C, Zhao J J, Dong H, Zhang Y, Zhao M Q. Effect of light intensity on photosynthesis, antioxidation properties and quality of cigar leaves. Southwest China J Agric Sci, 2023, 36: 2175–2182 (in Chinese with English abstract).
[35] 刘利, 王丽, 邓飞, 黄云, 刘代银, 任万军, 杨文钰. 遮阴对不同杂交稻组合叶片渗透调节物质含量及保护酶活性的影响. 中国水稻科学, 2012, 26: 569–575.
Liu L, Wang L, Deng F, Huang Y, Liu D Y, Ren W J, Yang W Y. Osmotic regulation substance contents and activities of protective enzymes in leaves of different hybrid rice combinations as affected by shading. Chin J Rice Sci, 2012, 26: 569–575 (in Chinese with English abstract).
[36] Kuai B K, Chen J Y, Hörtensteiner S. The biochemistry and molecular biology of chlorophyll breakdown. J Exp Bot, 2018, 69: 751–767.
[37] Jia T, Ito H, Tanaka A. The chlorophyll b reductase NOL participates in regulating the antenna size of photosystem II in Arabidopsis thaliana. Procedia Chem, 2015, 14: 422–427.
[38] Tang Y Y, Li M R, Chen Y P, Wu P Z, Wu G J, Jiang H W. Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice. J Plant Physiol, 2011, 168: 1952–1959.
[39] Li Y H, Cao T J, Guo Y L, Grimm B, Li X B, Duanmu D Q, Lin R C. Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway. J Integr Plant Biol, 2025, 67: 887–911.
[40] Li Y H, Liu H H, Ma T T, Li J L, Yuan J R, Xu Y C, Sun R, Zhang X Y, Jing Y J, Guo Y L, et al. Arabidopsis EXECUTER1 interacts with WRKY transcription factors to mediate plastid-to-nucleus singlet oxygen signaling. Plant Cell, 2023, 35: 827–851.
[41] Zhang T, Zhang R, Zeng X Y, Lee S, Ye L H, Tian S L, Zhang Y J, Busch W, Zhou W B, Zhu X G, et al. GLK transcription factors accompany ELONGATED HYPOCOTYL5 to orchestrate light-induced seedling development in Arabidopsis. Plant Physiol, 2024, 194: 2400–2421.
[42] Qiu K, Li Z P, Yang Z, Chen J Y, Wu S X, Zhu X Y, Gao S, Gao J, Ren G D, Kuai B K, et al. EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis. PLoS Genet, 2015, 11: e1005399.
[43] Guo Y F, Ren G D, Zhang K W, Li Z H, Miao Y, Guo H W. Leaf senescence: progression, regulation, and application. Mol Hortic, 2021, 1: 5.
[44] Sakuraba Y, Jeong J, Kang M Y, Kim J, Paek N C, Choi G. Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nat Commun, 2014, 5: 4636.
[45] Fang J J, Liu S T, Chen S J, Deng H J, Zhao L X, Liang X W, Chen Z Q, Zhang X Q, Xu S W, Wang C Y, et al. A R1-type MYB CmREVEILLE2 regulates light-mediated chlorophyll biosynthesis and green color formation in Chrysanthemum flowers. Hortic Adv, 2025, 3: 17.
[46] Zhu K J, Zheng X J, Ye J L, Huang Y, Chen H Y, Mei X H, Xie Z Z, Cao L X, Zeng Y L, Larkin R M, et al. Regulation of carotenoid and chlorophyll pools in hesperidia, anatomically unique fruits found only in Citrus. Plant Physiol, 2021, 187: 829–845.
[47] Zou S C, Zhuo M G, Abbas F, Hu G B, Wang H C, Huang X M. Transcription factor LcNAC002 coregulates chlorophyll degradation and anthocyanin biosynthesis in Litchi. Plant Physiol, 2023, 192: 1913–1927.
[48] Wei W, Yang Y Y, Lakshmanan P, Kuang J F, Lu W J, Pang X Q, Chen J Y, Shan W. Proteasomal degradation of MaMYB60 mediated by the E3 ligase MaBAH1 causes high temperature-induced repression of chlorophyll catabolism and green ripening in banana. Plant Cell, 2023, 35: 1408–1428.
[49] Yamori W. Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress. J Plant Res, 2016, 129: 379–395.
[50] Ruban A V, Johnson M P, Duffy C D P. The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta, 2012, 1817: 167–181.
[51] Ganeteg U, Klimmek F, Jansson S. Lhca5: an LHC-type protein associated with photosystem I. Plant Mol Biol, 2004, 54: 641–651.
[52] Schlüter U, Weber A P M. Regulation and evolution of C4 photosynthesis. Annu Rev Plant Biol, 2020, 71: 183–215.
[53] Sharkey T D. Discovery of the canonical Calvin-Benson cycle. Photosynth Res, 2019, 140: 235–252.
[54] 姜振升, 刘培培, 王美玲, 毕焕改, 艾希珍. 黄瓜幼苗Rubisco与Rubisco活化酶对光强的响应. 西北农业学报, 2011, 20(9): 95–99.
Jiang Z S, Liu P P, Wang M L, Bi H G, Ai X Z. Response of rubisco and rubisco activase in cucumber seedlings to light intensity. Acta Agric Boreali Occidentalis Sin, 2011, 20(9): 95–99 (in Chinese with English abstract).
[55] 李春荣, 张馨, 刘翠敏. 卡尔文-本森-巴萨姆循环的调节. 生命科学, 2024, 36: 1213–1225.
Li C R, Zhang X, Liu C M. Regulation of the Calvin-Benson-Bassham cycle. Chin Bull Life Sci, 2024, 36: 1213–1225 (in Chinese with English abstract).
[56] Hartl M, Füßl M, Boersema P J, Jost J O, Kramer K, Bakirbas A, Sindlinger J, Plöchinger M, Leister D, Uhrig G, et al. Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis. Mol Syst Biol, 2017, 13: 949.
[57] Sharkey T D. Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ, 2005, 28: 269–277.
[58] Chen J H, Tang M, Jin X Q, Li H, Chen L S, Wang Q L, Sun A Z, Yi Y, Guo F Q. Regulation of Calvin-Benson cycle enzymes under high temperature stress. aBIOTECH, 2022, 3: 65–77.
[59] Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot, 2010, 61: 4197–4220.
[60] 陆雯佳, 汪军成, 姚立蓉, 张宏, 司二静, 杨轲, 孟亚雄, 李葆春, 马小乐, 王化俊. 大麦PRX基因家族全基因组鉴定及其干旱胁迫下的表达分析. 作物学报, 2025, 51: 1198–1214.
Lu W J, Wang J C, Yao L R, Zhang H, Si E J, Yang K, Meng Y X, Li B C, Ma X L, Wang H J. Genome-wide identification of PRX gene family and analysis of their expressions under drought stress in barley. Acta Agron Sin, 2025, 51: 1198–1214 (in Chinese with English abstract).
[61] Passardi F, Longet D, Penel C, Dunand C. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry, 2004, 65: 1879–1893.
[62] 马鑫磊, 许瑞琪, 索晓曼, 李婧实, 顾鹏鹏, 姚锐, 林小虎, 高慧. 谷子Ⅲ型PRX基因家族全基因组鉴定及干旱胁迫下表达分析. 作物学报, 2022, 48: 2517–2532.
Ma X L, Xu R Q, Suo X M, Li J S, Gu P P, Yao R, Lin X H, Gao H. Genome-wide identification of the Class III PRX gene family in foxtail millet (Setaria italica L.) and expression analysis under drought stress. Acta Agron Sin, 2022, 48: 2517–2532 (in Chinese with English abstract).
|