Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Identification and expression pattern analysis of the BnaDUF579 gene family in Brassica napus

WANG Bin**,MENG Jiang-Yu**,QIU Hao-Liang,HE Ya-Jun*,QIAN Wei   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
  • Received:2025-01-15 Revised:2025-04-27 Accepted:2025-04-27 Published:2025-05-26
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32272060), the National Key Research and Development Program of China (2022YFD1200400), and the Natural Science Foundation of Chongqing (cstc2021jcyj-msxmx1198, CSTB2024NSCQ-MSX0423).

Abstract:

The Domain of Unknown Function 579 (DUF579) family is widely distributed across eukaryotes and plays a critical role in secondary cell wall development and xylan biosynthesis. However, a comprehensive investigation of BnaDUF579 genes in Brassica napus has not yet been reported. In this study, we performed a genome-wide identification and bioinformatic analysis of BnaDUF579 family members. Phylogenetic relationships, gene structure, conserved motif composition, chromosomal distribution, and collinearity were systematically analyzed. Additionally, tissue-specific expression patterns and promoter cis-acting elements were examined. A total of 31 BnaDUF579 genes were identified, of which 24 contained only a single exon. Based on sequence alignment and phylogenetic analysis, these genes were classified into four clades: Group 1, Group 2, Group 3, and Group 4. Genes within the same clade exhibited similar motif compositions, whereas those in different clades showed distinct differences. Evolutionary analysis revealed that the BnaDUF579 gene family is more closely related to that of B. oleracea than to B. rapa. Expression profiling showed that BnaDUF579 genes are predominantly expressed in the stem, root, silique, and seed tissues of rapeseed. Promoter analysis indicated that cis-acting elements associated with hormone responses, abiotic stress, tissue developmentand light responsiveness are widely present. Overall, these findings enhance our understanding of the BnaDUF579 gene family and provide a foundation for future functional studies in Brassica napus.

Key words: Brassica napus, DUF579, gene family, expression analysis, xyloglucan

[1] Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar G A, Sonnhammer E L L, Tosatto S C E, Paladin L, Raj S, Richardson L J, et al. Pfam: the protein families database in 2021. Nucleic Acids Res, 2021, 49: D412–D419.

[2] Bateman A, Coggill P, Finn R D. DUFs: families in search of function. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2010, 66: 1148–1152.

[3] Lyu P, Wan J, Zhang C, Hina A, Al Amin G M, Begum N, Zhao T. Unraveling the diverse roles of neglected genes containing domains of unknown function (DUFs): progress and perspective. Int J Mol Sci, 2023, 24: 4187.

[4] Luo C, Akhtar M, Min W, Bai X, Ma T, Liu C. Domain of unknown function (DUF) proteins in plants: function and perspective. Protoplasma, 2024, 261: 397–410.

[5] 张艺, 王晓晶, 赵淑清. 拟南芥DUF647家族成员RUS4植物表达载体的构建及亚细胞定位. 分子植物育种, 2020, 18: 444–449.
Zhang Y, Wang X J, Zhao S Q. Construction of the plant expression vector and subcellular localization of DUF647 family member RUS4 in Arabidopsis thaliana. Mol Plant Breed, 2020, 18: 444–449 (in Chinese with English abstract).

[6] 李文超, 张艺, 赵淑青. 拟南芥RUS4基因沉默对花药药室内壁次生加厚的影响. 中国细胞生物学学报, 2019, 41: 619–626.
Li W C, Zhang Y, Zhao S Q. Silencing of Arabidopsis RUS4 impairs anther endothecium secondary cell wall thickening. Chin J Cell Biol, 2019, 41: 619–626 (in Chinese with English abstract).

[7] 姜身飞, 谢云杰, 李乐乐, 王昱澎, 蔡秋华, 谢华安, 张建福. 水稻未知功能结构域基因OsDUF6的抗体制备. 福建农业学报, 2020, 35(2): 117–123.
Jiang S F, Xie Y J, Li L L, Wang Y P, Cai Q H, Xie H A, Zhang J F. Preparation of antibody for OsDUF6 with unknown functional domain from Oryzae sativa. Fujian J Agric Sci, 2020, 35(2): 117–123 (in Chinese with English abstract).

[8] Chen G, Cao X, Ma Z, Tang Y, Zeng Y, Chen L, Ye D, Zhang X. Overexpression of the nuclear protein gene AtDUF4 increases organ size in Arabidopsis thaliana and Brassica napus. J Genet Genomics, 2018, 45: 459–462.

[9] 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证. 作物学报, 2022, 48: 1635–1644.
Dai L S, Chang W, Zhang S, Qian M C, Li X D, Zhang K, Li J N, Qu C M, Lu K. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana. Acta Agron Sin, 2022, 48: 1635–1644 (in Chinese with English abstract).

[10] Yuan Y, Teng Q, Zhong R, Ye Z H. TBL3 and TBL31, two Arabidopsis DUF231 domain proteins, are required for 3-O-monoacetylation of xylan. Plant Cell Physiol, 2016, 57: 35–45.

[11] Gao Y, Badejo A A, Sawa Y, Ishikawa T. Analysis of two L-Galactono-1,4-lactone-responsive genes with complementary expression during the development of Arabidopsis thaliana. Plant Cell Physiol, 2012, 53: 592–601.

[12] Yang S Q, Li W Q, Miao H, Gan P F, Qiao L, Chang Y L, Shi C H, Chen K M. REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice (N Y), 2016, 9: 37.

[13] Yan D, Zhou Y, Ye S, Zeng L, Zhang X, He Z. Beak-shaped grain 1/TRIANGULAR HULL 1, a DUF640 gene, is associated with grain shape, size and weight in rice. Sci China Life Sci, 2013, 56: 275–283.

[14] Cui Y, Wang M, Zhou H, Li M, Huang L, Yin X, Zhao G, Lin F, Xia X, Xu G. OsSGL, a novel DUF1645 domain-containing protein, confers enhanced drought tolerance in transgenic rice and Arabidopsis. Front Plant Sci, 2016, 7: 2001.

[15] Kim J M, Woo D H, Kim S H, Lee S Y, Park H Y, Seok H Y, Chung W S, Moon Y H. Arabidopsis MKKK20 is involved in osmotic stress response via regulation of MPK6 activity. Plant Cell Rep, 2012, 31: 217–224.

[16] Luo C, Guo C, Wang W, Wang L, Chen L. Overexpression of a new stress-repressive gene OsDSR2 encoding a protein with a DUF966 domain increases salt and simulated drought stress sensitivities and reduces ABA sensitivity in rice. Plant Cell Rep, 2014, 33: 323–336.

[17] Song D, Sun J, Li L. Diverse roles of PtrDUF579 proteins in Populus and PtrDUF579-1 function in vascular cambium proliferation during secondary growth. Plant Mol Biol, 2014, 85: 601–612.

[18] Smith P J, O'Neill M A, Backe J, York W S, Peña M J, Urbanowicz B R. Analytical techniques for determining the role of domain of unknown function 579 proteins in the synthesis of O-methylated plant polysaccharides. SLAS Technol, 2020, 25: 345–355.

[19] Li M, Chen F, Luo J, Gao Y, Cai J, Zeng W, Doblin M S, Huang G and Xu W. The DUF579 proteins GhIRX15s regulate cotton fiber development by interacting with proteins involved in xylan synthesis. Crop J, 2024, 12: 1112–1125.

[20] Lee C, Teng Q, Zhong R, Yuan Y, Haghighat M, Ye Z H. Three Arabidopsis DUF579 domain-containing GXM proteins are methyltransferases catalyzing 4-O-methylation of glucuronic acid on xylan. Plant Cell Physiol, 2012, 53: 1934–1949.

[21] Temple H, Mortimer J C, Tryfona T, Yu X, Lopez-Hernandez F, Sorieul M, Anders N, Dupree P. Two members of the DUF579 family are responsible for Arabinogalactan methylation in Arabidopsis. Plant Direct, 2019, 3: e00117.

[22] Li X, Jackson P, Rubtsov D V, Faria-Blanc N, Mortimer J C, Turner S R, Krogh K B, Johansen K S, Dupree P. Development and application of a high throughput carbohydrate profiling technique for analyzing plant cell wall polysaccharides and carbohydrate active enzymes. Biotechnol Biofuels, 2013, 6: 94.

[23] Urbanowicz B R, Peña M J, Ratnaparkhe S, Avci U, Backe J, Steet H F, Foston M, Li H, O'Neill M A, Ragauskas A J, et al. 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. Proc Natl Acad Sci USA, 2012, 109: 14253–14258.

[24] Jensen J K, Kim H, Cocuron J C, Orler R, Ralph J, Wilkerson C G. The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in Arabidopsis. Plant J, 2011, 66: 387–400.

[25] Brown D, Wightman R, Zhang Z, Gomez L D, Atanassov I, Bukowski J P, Tryfona T, McQueen-Mason S J, Dupree P, Turner S. Arabidopsis genes IRREGULAR XYLEM (IRX15) and IRX15L encode DUF579-containing proteins that are essential for normal xylan deposition in the secondary cell wall. Plant J, 2011, 66: 401–413.

[26] 刘新红, 邓力超, 曲亮, 惠荣奎, 李莓. 油菜的多用途利用及产业发展建议. 湖南农业科学, 2018(5): 100–103.
Liu X H, Deng L C, Qu L, Hui R K, Li M. Multipurpose utilization of rape and suggestions on development of rape industry. Hunan Agric Sci, 2018: 100–103 (in Chinese with English abstract).

[27] Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, et al. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950–953.

[28] Zhu Y, Wu N, Song W, Yin G, Qin Y, Yan Y, Hu Y. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol, 2014, 14: 93.

[29] Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y, Xia R. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol Plant, 2023, 16: 1733–1742.

[30] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods, 2001, 25: 402–408.

[31] 陈吴钧, 刘江栋, 蒋凯旋, 王幼平, 蒋金金. 甘蓝型油菜BnKNOX基因家族的鉴定与分析. 作物学报, 2023, 49: 2991–3006.
Chen W J, Liu J D, Jiang K X, Wang Y P, Jiang J J. Identification and analysis of BnKNOX gene family in Brassica napus. Acta Agron Sin, 2023, 49: 2991–3006 (in Chinese with English abstract).

[32] Cai X, Chang L, Zhang T, Chen H, Zhang L, Lin R, Liang J, Wu J, Freeling M, Wang X. Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa. Genome Biol, 2021, 22: 166.

[1] LU Wen-Jia, WANG Jun-Cheng, YAO Li-Rong, ZHANG Hong, SI Er-Jing, YANG Ke, MENG Ya-Xiong, LI Bao-Chun, MA Xiao-Le, WANG Hua-Jun. Genome-wide identification of PRX gene family and analysis of their expressions under drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(5): 1198-1214.
[2] ZHOU En-Qiang, MIAO Ya-Mei, ZHOU Yao, YAO Meng-Nan, ZHAO Na, WANG Yong-Qiang, ZHU Yu-Xiang, XUE Dong, LI Zong-Di, SHI Yu-Xin, LI Bo, WANG Kai-Hua, GU Chun-Yan, WANG Xue-Jun, WEI Li-Bin. Analysis of bZIP gene family and identification of seed development candidate genes in pea based on seed development transcriptome [J]. Acta Agronomica Sinica, 2025, 51(4): 914-931.
[3] PAN Ju-Zhong, WEI Ping, ZHU De-Ping, SHAO Sheng-Xue, CHEN Shan-Shan, WEI Ya-Qian, GAO Wei-Wei. Cloning and functional analysis of OsERF104 transcription factor in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 900-913.
[4] GUO Bing, QIN Jia-Fan, LI Na, SONG Meng-Yao, WANG Li-Ming, LI Jun-Xia, MA Xiao-Qian. Genome-wide identification and expression analysis of SHMT gene family in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2025, 51(3): 586-5897.
[5] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[6] QI Jia-Min, XU Chun-Miao, XIAO Bin. Genome-wide identification and expression analysis of TIFY gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2297-2309.
[7] HE Dan-Dan, SHU Ya-Zhou, ZHOU Hai-Lian, WU Song-Guo, WEI Xiao-Shuang, YANG Ming-Chong, LI Bo, WU Zheng-Dan, HAN Shi-Jian, YANG Juan, WANG Ji-Bin, WANG Ling-Qiang. OsRPTA18 participated in the regulation of leaf inclination in rice [J]. Acta Agronomica Sinica, 2024, 50(8): 1934-1947.
[8] LIU Zhen, CHEN Li-Min, LI Zhi-Tao, ZHU Jin-Yong, WANG Wei-Lu, QI Zhe-Ying, YAO Pan-Feng, BI Zhen-Zhen, SUN Chao, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of ARM gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(6): 1451-1466.
[9] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[10] LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943.
[11] JU Ji-Hao, MA Chao, WANG Tian-Ning, WU Yi, DONG Zhong, FANG Mei-E, CHEN Yu-Shu, ZHANG Jun, FU Guo-Zhan. Genome wide identification and expression analysis of TaPOD family in wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 779-792.
[12] DAI Hong-Wei, LIU Jie-Qiang, ZHANG Li, TONG Hua-Rong, YUAN Lian-Yu. Cloning and relative expression pattern analysis of CsMCC1 and CsMCC2 in tea plant (Camellia sinensis) [J]. Acta Agronomica Sinica, 2024, 50(3): 656-668.
[13] ZHANG Li-Jie, ZHOU Hai-Yu, MUHAMMAD Zeshan, MUNSIF Ali Shad, YANG Ming-Chong, LI Bo, HAN Shi-Jian, ZHANG Cui-Cui, HU Li-Hua, WANG Ling-Qiang. Functional analysis of OsFLZ13, the gene encoding a small peptide zinc finger protein in rice [J]. Acta Agronomica Sinica, 2024, 50(3): 543-555.
[14] YIN Xiang-Zhen, ZHAO Jian-Xin, HAO Cui-Cui, PAN Li-Juan, CHEN Na, XU Jing, JIANG Xiao, ZHAO Xu-Hong, WANG En-Qi, CAO Huan, YU Shan-Lin, CHI Xiao-Yuan. Cloning and expression analysis of transcription factor AhWRI1s in peanut [J]. Acta Agronomica Sinica, 2024, 50(12): 3155-3164.
[15] RONG Yu-Xuan, HUI Liu-Yang, WANG Pei-Qi, SUN Si-Min, ZHANG Xian-Long, YUAN Dao-Jun, YANG Xi-Yan. Identification of the CLE gene family in Gossypium hirsutum and functional analysis of the drought resistance of GhCLE13 [J]. Acta Agronomica Sinica, 2024, 50(12): 2925-2939.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!