Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 914-931.doi: 10.3724/SP.J.1006.2025.44123
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHOU En-Qiang(), MIAO Ya-Mei, ZHOU Yao, YAO Meng-Nan, ZHAO Na, WANG Yong-Qiang, ZHU Yu-Xiang, XUE Dong, LI Zong-Di, SHI Yu-Xin, LI Bo, WANG Kai-Hua, GU Chun-Yan, WANG Xue-Jun(
), WEI Li-Bin(
)
[1] | Gudko V, Usatov A, Minkina T, Duplii N, Azarin K, Tatarinova T V, Sushkova S, Garg A, Denisenko Y. Dependence of the pea grain yield on climatic factors under semi-arid conditions. Agronomy, 2024, 14: 133. |
[2] | Yan L C, Xu Y, Yang F, Shi C H, Liu Y, Bi S. Characterization of odor profiles of pea milk varieties and identification of key odor-active compounds by molecular sensory science approaches using soybean milk as a reference. Food Chem, 2024, 445: 138696. |
[3] | Shanthakumar P, Klepacka J, Bains A, Chawla P, Dhull S B, Najda A. The current situation of pea protein and its application in the food industry. Molecules, 2022, 27: 5354. |
[4] | Li H Y, Lv Q Y, Deng J, Huang J, Cai F, Liang C G, Chen Q J, Wang Y, Zhu L W, Zhang X N, et al. Transcriptome analysis reveals key seed-development genes in common buckwheat (Fagopyrum esculentum). Int J Mol Sci, 2019, 20: 4303. |
[5] |
Liu N, Zhang G W, Xu S C, Mao W H, Hu Q Z, Gong Y M. Comparative transcriptomic analyses of vegetable and grain pea (Pisum sativum L.) seed development. Front Plant Sci, 2015, 6: 1039.
doi: 10.3389/fpls.2015.01039 pmid: 26635856 |
[6] | Savadi S. Molecular regulation of seed development and strategies for engineering seed size in crop plants. Plant Growth Regul, 2018, 84: 401-422. |
[7] | Le B H, Cheng C, Bui A Q, Wagmaister J A, Henry K F, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, et al. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci USA, 2010, 107: 8063-8070. |
[8] | Xue L J, Zhang J J, Xue H W. Genome-wide analysis of the complex transcriptional networks of rice developing seeds. PLoS One, 2012, 7: e31081. |
[9] |
Kushwaha S K, Grimberg Å, Carlsson A S, Hofvander P. Charting oat (Avena sativa) embryo and endosperm transcription factor expression reveals differential expression of potential importance for seed development. Mol Genet Genomics, 2019, 294: 1183-1197.
doi: 10.1007/s00438-019-01571-x pmid: 31073872 |
[10] |
Basnet R K, Moreno-Pachon N, Lin K, Bucher J, Visser R G F, Maliepaard C, Bonnema G. Genome-wide analysis of coordinated transcript abundance during seed development in different Brassica rapa morphotypes. BMC Genomics, 2013, 14: 840.
doi: 10.1186/1471-2164-14-840 pmid: 24289287 |
[11] |
Kohl S, Hollmann J, Erban A, Kopka J, Riewe D, Weschke W, Weber H. Metabolic and transcriptional transitions in barley glumes reveal a role as transitory resource buffers during endosperm filling. J Exp Bot, 2015, 66: 1397-1411.
doi: 10.1093/jxb/eru492 pmid: 25617470 |
[12] |
Dröge-Laser W, Snoek B L, Snel B, Weiste C. The Arabidopsis bZIP transcription factor family-an update. Curr Opin Plant Biol, 2018, 45: 36-49.
doi: S1369-5266(17)30215-7 pmid: 29860175 |
[13] | Jiang N Q, Wang L N, Lan Y G, Liu H X, Zhang X Y, He W, Wu M, Yan H W, Xiang Y. Genome-wide identification of the Carya illinoinensis bZIP transcription factor and the potential function of S1-bZIPs in abiotic stresses. Tree Genet Genomes, 2023, 19: 47. |
[14] | Liang Y, Xia J Q, Jiang Y S, Bao Y Z, Chen H C, Wang D J, Zhang D, Yu J, Cang J. Genome-wide identification and analysis of bZIP gene family and resistance of TaABI5 (TabZIP96) under freezing stress in wheat (Triticum aestivum). Int J Mol Sci, 2022, 23: 2351. |
[15] | Huang L T, Liu C Y, Li L, Han X S, Chen H W, Jiao C H, Sha A H. Genome-wide identification of bZIP transcription factors in faba bean based on transcriptome analysis and investigation of their function in drought response. Plants (Basel), 2023, 12: 3041. |
[16] | Han P C, Yin T, Xi D X, Yang X Y, Zhang M J, Zhu L, Zhang H Y, Liu X Z. Genome-wide identification of the sweet orange bZIP gene family and analysis of their expression in response to infection by Penicillium digitatum. Horticulturae, 2023, 9: 393. |
[17] | Liu H T, Tang X, Zhang N, Li S G, Si H J. Role of bZIP transcription factors in plant salt stress. Int J Mol Sci, 2023, 24: 7893. |
[18] | Zhong X J, Feng X Q, Li Y L, Guzmán C, Lin N, Xu Q, Zhang Y Z, Tang H P, Qi P F, Deng M, et al. Genome-wide identification of bZIP transcription factor genes related to starch synthesis in barley (Hordeum vulgare L.). Genome, 2021, 64: 1067-1080. |
[19] | Niu B X, Deng H, Li T T, Sharma S, Yun Q B, Li Q R, Zhiguo E, Chen C. OsbZIP76 interacts with OsNF-YBs and regulates endosperm cellularization in rice (Oryza sativa). J Integr Plant Biol, 2020, 62: 1983-1996. |
[20] | Wang J C, Xu H, Zhu Y, Liu Q Q, Cai X L. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J Exp Bot, 2013, 64: 3453-3466. |
[21] | Dong Q, Xu Q Q, Kong J J, Peng X J, Zhou W, Chen L, Wu J D, Xiang Y, Jiang H Y, Cheng B J. Overexpression of ZmbZIP22 gene alters endosperm starch content and composition in maize and rice. Plant Sci, 2019, 283: 407-415. |
[22] | Chen J, Yi Q, Cao Y, Wei B, Zheng L J, Xiao Q L, Xie Y, Gu Y, Li Y P, Huang H H, et al. ZmbZIP91 regulates expression of starch synthesis-related genes by binding to ACTCAT elements in their promoters. J Exp Bot, 2016, 67: 1327-1338. |
[23] | Song Y H, Luo G B, Shen L S, Yu K, Yang W L, Li X, Sun J Z, Zhan K H, Cui D Q, Liu D C, et al. TubZIP28, a novel bZIP family transcription factor from Triticum urartu, and TabZIP28, its homologue from Triticum aestivum, enhance starch synthesis in wheat. New Phytol, 2020, 226: 1384-1398. |
[24] | Wang J, Wang Y, Wu X Y, Wang B G, Lu Z F, Zhong L P, Li G J, Wu X H. Insight into the bZIP gene family in Lagenaria siceraria: genome and transcriptome analysis to understand gene diversification in Cucurbitaceae and the roles of LsbZIP gene expression and function under cold stress. Front Plant Sci, 2023, 13: 1128007. |
[25] | Wang P, Li Y X, Zhang T T, Kang Y Q, Li W, Wang J, Yu W G, Zhou Y. Identification of the bZIP gene family and investigation of their response to drought stress in Dendrobium catenatum. Agronomy, 2023, 13: 236. |
[26] | Hwang I, Jung H J, Park J I, Yang T J, Nou I S. Transcriptome analysis of newly classified bZIP transcription factors of Brassica rapa in cold stress response. Genomics, 2014, 104: 194-202. |
[27] | Cao L R, Lu X M, Zhang P Y, Wang G R, Wei L, Wang T C. Systematic analysis of differentially expressed maize ZmbZIP genes between drought and rewatering transcriptome reveals bZIP family members involved in abiotic stress responses. Int J Mol Sci, 2019, 20: 4103. |
[28] |
Kreplak J, Madoui M A, Cápal P, Novák P, Labadie K, Aubert G, Bayer P E, Gali K K, Syme R A, Main D, et al. A reference genome for pea provides insight into legume genome evolution. Nat Genet, 2019, 51: 1411-1422.
doi: 10.1038/s41588-019-0480-1 pmid: 31477930 |
[29] | Punta M, Coggill P C, Eberhardt R Y, Mistry J, Tate J, Boursnell C, Pang N Z, Forslund K, Ceric G, Clements J, et al. The pfam protein families database. Nucleic Acids Res, 2012, 40: D290-D301. |
[30] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[31] | Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550. |
[32] | Sajjad M, Xue S D, Zhou M J, Li G H, Xu Y C, Liu L, Zhu J T, Meng Q T, Jin Q M, Du H, et al. Decoding comparative taste and nutrition regulation in Chinese cabbage via integrated metabolome and transcriptome analysis. Food Res Int, 2024, 195: 114943. |
[33] | Ye S H, Yang J, Huang Y Y, Liu J, Ma X W, Zhao L, Ma C Z, Tu J X, Shen J X, Fu T D, et al. Bulk segregant analysis-sequencing and RNA-Seq analyses reveal candidate genes associated with albino phenotype in Brassica napus. Front Plant Sci, 2022, 13: 994616. |
[34] | Subramanian B, Gao S H, Lercher M J, Hu S N, Chen W H. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res, 2019, 47: W270-W275. |
[35] |
Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F, Group B R. bZIP transcription factors in Arabidopsis. Trends Plant Sci, 2002, 7: 106-111.
doi: 10.1016/s1360-1385(01)02223-3 pmid: 11906833 |
[36] | Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208. |
[37] | Ahmad B, Azeem F, Ali M A, Nawaz M A, Nadeem H, Abbas A, Batool R, Atif R M, Ijaz U, Nieves-Cordones M, et al. Genome-wide identification and expression analysis of two component system genes in Cicer arietinum. Genomics, 2020, 112: 1371-1383. |
[38] | Cheng Z J, Zhao X Y, Shao X X, Wang F, Zhou C, Liu Y G, Zhang Y, Zhang X S. Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of SHORT HYPOCOTYL UNDER BLUE1. Plant Cell, 2014, 26: 1053-1068. |
[39] |
Bensmihen S, Giraudat J, Parcy F. Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during Arabidopsis thaliana embryo maturation. J Exp Bot, 2005, 56: 597-603.
doi: 10.1093/jxb/eri050 pmid: 15642716 |
[40] |
Kim I, Lee K R, Park M E, Kim H U. The seed-specific transcription factor DPBF2 modulates the fatty acid composition in seeds. Plant Direct, 2022, 6: e395.
doi: 10.1002/pld3.395 pmid: 35388372 |
[41] | Shi Q B, Xia Y, Xue N, Wang Q B, Tao Q, Li M J, Xu D, Wang X F, Kong F Y, Zhang H S, et al. Modulation of starch synthesis in Arabidopsis via phytochrome B-mediated light signal transduction. J Integr Plant Biol, 2024, 66: 973-985. |
[42] |
Sagor G H M, Berberich T, Tanaka S, Nishiyama M, Kanayama Y, Kojima S, Muramoto K, Kusano T. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene. Plant Biotechnol J, 2016, 14: 1116-1126.
doi: 10.1111/pbi.12480 pmid: 26402509 |
[43] | Jain P, Shah K, Rishi V. Potential in vitro and ex vivo targeting of bZIP53 involved in stress response and seed maturation in Arabidopsis thaliana by five designed peptide inhibitors. Biochim Biophys Acta Proteins Proteom, 2018, 1866: 1249-1259. |
[44] | Rahman S, Rehman A, Waqas M, Mubarik M S, Alwutayd K, AbdElgawad H, Jalal A, Azeem F, Rizwan M. Genome-wide exploration of bZIP transcription factors and their contribution to alkali stress response in Helianthus annuus. Plant Stress, 2023, 10: 100204. |
[45] | Gallego-Giraldo C, Hu J H, Urbez C, Gomez M D, Sun T P, Perez-Amador M A. Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis. Plant J, 2014, 79: 1020-1032. |
[46] | Bartrina I, Otto E, Strnad M, Werner T, Schmülling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell, 2011, 23: 69-80. |
[47] | Batista R A, Figueiredo D D, Santos-González J, Köhler C. Auxin regulates endosperm cellularization in Arabidopsis. Genes Dev, 2019, 33: 466-476. |
[48] |
Wu C J, Shan W, Liang S M, Zhu L S, Guo Y F, Chen J Y, Lu W J, Li Q F, Su X G, Kuang J F. MaMPK2 enhances MabZIP93-mediated transcriptional activation of cell wall modifying genes during banana fruit ripening. Plant Mol Biol, 2019, 101: 113-127.
doi: 10.1007/s11103-019-00895-x pmid: 31300998 |
[49] |
Fatihi A, Boulard C, Bouyer D, Baud S, Dubreucq B, Lepiniec L. Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds. Plant Sci, 2016, 250: 198-204.
doi: S0168-9452(16)30132-7 pmid: 27457996 |
[50] |
Agarwal P, Kapoor S, Tyagi A K. Transcription factors regulating the progression of monocot and dicot seed development. Bioessays, 2011, 33: 189-202.
doi: 10.1002/bies.201000107 pmid: 21319185 |
[51] | Tan H L, Yang X H, Zhang F X, Zheng X, Qu C M, Mu J Y, Fu F Y, Li J N, Guan R Z, Zhang H S, et al. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol, 2011, 156: 1577-1588. |
[52] | Kirkbride R C, Fischer R L, Harada J J. LEAFY COTYLEDON1, a key regulator of seed development, is expressed in vegetative and sexual propagules of Selaginella moellendorffii. PLoS One, 2013, 8: e67971. |
[53] | Lee S W, Choi D, Moon H, Kim S, Kang H, Paik I, Huq E, Kim D H. PHYTOCHROME-INTERACTING FACTORS are involved in starch degradation adjustment via inhibition of the carbon metabolic regulator QUA-QUINE STARCH in Arabidopsis. Plant J, 2023, 114: 110-123. |
[54] | Liu Z J, Zheng L M, Pu L, Ma X F, Wang X, Wu Y, Ming H N, Wang Q, Zhang G F. ENO2 affects the seed size and weight by adjusting cytokinin content and forming ENO2-bZIP75 complex in Arabidopsis thaliana. Front Plant Sci, 2020, 11: 574316. |
[55] | Jain P, Shah K, Sharma N, Kaur R, Singh J, Vinson C, Rishi V. A-ZIP53, a dominant negative reveals the molecular mechanism of heterodimerization between bZIP53, bZIP10 and bZIP25 involved in Arabidopsis seed maturation. Sci Rep, 2017, 7: 14343. |
[1] | LIN Wei-Jin, GUO Ze-Jia, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, CHEN Xiao-Ping, HONG Yan-Bin, LI Shao-Xiong, LU Qing. QTL mapping and candidate gene analysis of peanut pod yield-related traits [J]. Acta Agronomica Sinica, 2025, 51(4): 969-981. |
[2] | CHI Xiao-Yuan, BI Jing-Nan, ZHAO Jian-Xin, CHEN Na, PAN Li-Juan, JIANG Xiao, YIN Xiang-Zhen, ZHAO Xu-Hong, MA Jun-Qing, XU Jing. Evaluation of mechanical properties of peanut pods and screening of early maturing germplasm [J]. Acta Agronomica Sinica, 2025, 51(4): 943-957. |
[3] | GUO Bing, QIN Jia-Fan, LI Na, SONG Meng-Yao, WANG Li-Ming, LI Jun-Xia, MA Xiao-Qian. Genome-wide identification and expression analysis of SHMT gene family in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2025, 51(3): 586-5897. |
[4] | JIN Gao-Rui, WU Xiao-Li, DENG Li, CHEN Yu-Ning, YU Bo-Lun, GUO Jian-Bin, DING Ying-Bin, LIU Nian, LUO Huai-Yong, CHEN Wei-Gang, HUANG Li, ZHOU Xiao-Jing, HUAI Dong-Xin, TAN Jia-Zhuang, JIANG Hui-Fang, REN Li, LEI Yong, LIAO Bo-Shou. Development and characterization of novel peanut genetic stocks with high oleic acid and enhanced resistance both to Aspergillus flavus infection and aflatoxin production [J]. Acta Agronomica Sinica, 2025, 51(3): 687-895. |
[5] | JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811. |
[6] | ZHAO Fei-Fei, LI Shao-Xiong, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, HONG Yan-Bin, CHEN Xiao-Ping, LU Qing, CAO Yu-Man. Association mapping of internode and lateral branch internode length of peanut main stem and analysis of candidate genes [J]. Acta Agronomica Sinica, 2025, 51(2): 548-556. |
[7] | HU Peng-Ju, GUO Song, SONG Ya-Hui, JIN Xin-Xin, SU Qiao, YANG Yong-Qing, WANG Jin. Genetic and QTL mapping analysis of oil content in peanut across multiple environments [J]. Acta Agronomica Sinica, 2025, 51(2): 324-333. |
[8] | WANG Run-Feng, LI Wen-Jia, LIAO Yong-Jun, LU Qing, LIU Hao, LI Hai-Fen, LI Shao-Xiong, LIANG Xuan-Qiang, HONG Yan-Bin, CHEN Xiao-Ping. Evaluation of pod maturity and identification of early-maturing germplasm for core peanut germplasm resources [J]. Acta Agronomica Sinica, 2025, 51(2): 395-404. |
[9] | WANG Yuan, XU Jia-Yin, DONG Er-Wei, WANG Jin-Song, LIU Qiu-Xia, HUANG Xiao-Lei, JIAO Xiao-Yan. Effects of manure replacement of chemical fertilizer nitrogen on yield, nitrogen accumulation, and quality of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(1): 149-160. |
[10] | QI Jia-Min, XU Chun-Miao, XIAO Bin. Genome-wide identification and expression analysis of TIFY gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2297-2309. |
[11] | YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236. |
[12] | LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166. |
[13] | HE Dan-Dan, SHU Ya-Zhou, ZHOU Hai-Lian, WU Song-Guo, WEI Xiao-Shuang, YANG Ming-Chong, LI Bo, WU Zheng-Dan, HAN Shi-Jian, YANG Juan, WANG Ji-Bin, WANG Ling-Qiang. OsRPTA18 participated in the regulation of leaf inclination in rice [J]. Acta Agronomica Sinica, 2024, 50(8): 1934-1947. |
[14] | ZHU Rong-Yu, ZHAO Meng-Jie, YAO Yun-Feng, LI Yan-Hong, LI Xiang-Dong, LIU Zhao-Xin. Effects of straw returning methods and sowing depth on soil physical properties and emergence characteristics of summer peanut [J]. Acta Agronomica Sinica, 2024, 50(8): 2106-2121. |
[15] | HUANG Shu-Xian, LIU Rong, LI Guan, SHU Qin, XU Fei, ZONG Xu-Xiao, YANG Tao. Establishment of large fragment knockout in pea genome by CRISPR/Cas9 technology [J]. Acta Agronomica Sinica, 2024, 50(7): 1658-1668. |
|