Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 914-931.doi: 10.3724/SP.J.1006.2025.44123

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of bZIP gene family and identification of seed development candidate genes in pea based on seed development transcriptome

ZHOU En-Qiang(), MIAO Ya-Mei, ZHOU Yao, YAO Meng-Nan, ZHAO Na, WANG Yong-Qiang, ZHU Yu-Xiang, XUE Dong, LI Zong-Di, SHI Yu-Xin, LI Bo, WANG Kai-Hua, GU Chun-Yan, WANG Xue-Jun(), WEI Li-Bin()   

  1. Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226012, Jiangsu, China
  • Received:2024-07-29 Accepted:2024-12-12 Online:2025-04-12 Published:2024-12-18
  • Contact: E-mail: libinwei2013@aliyun.com; E-mail: wangxj4002@sina.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-08-Z10);Independent Innovation Project of Agricultural Science and Technology in Jiangsu Province [CX (22) 2011], and the Jiangsu Province “Double Talents” Project(YSSCRC2022469)

Abstract:

The bZIP gene is widely involved in physiological processes such as seed development, light signal regulation, and stress response. However, little is known about the regulation of seed development by pea PastbZIP gene. In order to identify the PastbZIP gene family related to pea seed development and reveal its evolutionary relationship, this study used bioinformatics methods and seed development transcriptome data to identify and analyze the PastbZIP gene family, and mined the candidate PastbZIP genes related to seed development through comparative genomics, at the same time, it was verified by protein interaction network and qRT-PCR. A total of 62 PastbZIP genes were identified from the transcriptome data of pea seed development, and PastbZIP genes were divided into 9 groups according to phylogenetic characteristics, Different subfamilies showed evolutionary diversity and differences in protein physicochemical properties, gene structure, conserved motifs, etc. Collinearity analysis showed that pea had 54, 23, 8, and 22 pairs of collinearity gene with soybean, Medicago truncatula, Arabidopsis and faba bean, respectively. More important, it was found that the fragment replication was the main driving force for the expansion of the PastbZIP gene family, and the evolution of these genes was achieved through purification selection. KEGG enrichment analysis showed that PastbZIP was mainly enriched in plant hormone signal transduction pathways. The same is that the cis-acting elements of the PastbZIP promoter contain a large number of hormone response elements, and 60 PastbZIP (96.8%) genes contained five hormone response elements. Ten candidate genes related to seed development were found in pea by homologous comparison, and protein interaction genes also regulated seed development. In conclusion, this study was the first to identify and analyze the members of the PastbZIP family related to seed development in pea, and excavated the candidate genes related to seed development through homologous alignment. These results will provide important reference for the study of PastbZIP gene regulation of seed development.

Key words: pea, PastbZIP, gene family, seed development, evolutionary analysis, protein interaction network

Table 1

Primer sequences used in qRT-PCR analysis"

基因名称
Gene name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
PsatbZIP9 AGCAGGTGTGGTTAGGGAAC CCAATAGCGAAAGGAGCAG
PsatbZIP21/22/23 CCGAAACGAGACACTCAAG AAACAACACCGCCACTATG
PsatbZIP47 ACATCAGGTCCTTTGGGTC AACCAGTGCCTTTACGAGAG
PsatbZIP59 GAAACAGAAGCACTTGGATG TCATAACCCCAACAATCTC
PsatbZIP61 CGAACAGGTTACAAAGCGAG CCATAATCCGTTGAATCGG
PsatACTIN CACAATTGGCGCTGAAAGAT TAATTGAGTTAAATGTCGTCTCATGGAT

Table 2

Information of bZIP family members in pea"

基因
Gene
bZIP名称
bZIP name
氨基酸长度
Amino acid length (aa)
相对分子量
Molecular weight (Da)
等电点
Isoelectric point
不稳定指数
Instability index
脂肪系数
Aliphatic index
亲疏水性
Grand average of hydropathicity
Psat6g192360.1 PsatbZIP1 227 25,102.05 5.22 37.05 66.12 -0.68
Psat6g192360.2 PsatbZIP2 246 27,463.83 5.50 45.81 69.72 -0.70
Psat6g192360.3 PsatbZIP3 246 27,248.60 5.32 41.50 71.71 -0.54
Psat6g192360.4 PsatbZIP4 224 24,654.51 5.03 38.59 67.01 -0.64
Psat5g042560.3 PsatbZIP5 326 34,559.98 9.32 36.04 73.59 -0.42
Psat5g042560.4 PsatbZIP6 378 40,577.77 6.87 40.73 71.75 -0.47
Psat7g122760.1 PsatbZIP7 403 44,435.37 9.68 51.96 77.59 -0.56
Psat7g122760.2 PsatbZIP8 403 44,435.37 9.68 51.96 77.59 -0.56
Psat3g033680.1 PsatbZIP9 422 46,093.33 8.24 61.59 63.55 -0.73
Psat4g141680.1 PsatbZIP10 325 36,171.72 6.88 53.62 67.85 -0.77
Psat4g141680.2 PsatbZIP11 325 36,171.72 6.88 53.62 67.85 -0.77
Psat1g087440.1 PsatbZIP12 320 36,160.67 7.91 53.79 70.03 -0.82
Psat1g087440.2 PsatbZIP13 316 35,770.23 7.91 54.34 70.00 -0.84
Psat1g087440.3 PsatbZIP14 320 36,160.67 7.91 53.79 70.03 -0.82
Psat1g087440.4 PsatbZIP15 316 35,770.23 7.91 54.34 70.00 -0.84
Psat3g083400.1 PsatbZIP16 326 36,292.51 6.91 52.21 63.47 -0.85
Psat3g083400.2 PsatbZIP17 281 30,930.51 7.18 46.51 65.98 -0.71
Psat0s2281g0240.2 PsatbZIP18 270 29,959.73 8.65 50.86 79.07 -0.67
Psat0s2281g0240.3 PsatbZIP19 248 27,402.87 9.00 42.79 82.14 -0.62
Psat5g225680.1 PsatbZIP20 324 36,114.68 6.62 52.36 71.30 -0.74
Psat5g257120.1 PsatbZIP21 322 36,421.87 8.76 62.27 70.53 -0.86
Psat5g257120.2 PsatbZIP22 297 33,475.32 5.77 63.92 69.56 -0.84
Psat5g257120.3 PsatbZIP23 305 34,524.56 5.46 60.96 70.92 -0.75
Psat6g006040.1 PsatbZIP24 342 37,238.98 5.14 42.49 68.36 -0.58
Psat6g006040.2 PsatbZIP25 275 30,254.58 5.85 47.73 70.15 -0.63
Psat3g007160.1 PsatbZIP26 371 40,638.86 6.57 55.38 62.13 -0.85
Psat3g007160.2 PsatbZIP27 268 29,590.67 7.69 56.35 67.76 -0.89
Psat6g144640.1 PsatbZIP28 422 45,401.27 5.59 60.53 65.85 -0.65
Psat3g079000.1 PsatbZIP29 455 50,296.26 6.69 56.63 70.48 -0.65
Psat3g079000.2 PsatbZIP30 438 48,682.51 7.09 58.00 68.74 -0.69
Psat3g079000.3 PsatbZIP31 438 48,682.51 7.09 58.00 68.74 -0.69
Psat3g079000.4 PsatbZIP32 455 50,296.26 6.69 56.63 70.48 -0.65
Psat5g257080.1 PsatbZIP33 483 54,318.93 6.29 52.82 67.47 -0.64
Psat5g135880.1 PsatbZIP34 357 40,077.79 7.09 46.11 87.45 -0.31
Psat2g076800.4 PsatbZIP35 318 36,387.11 5.12 61.05 89.56 -0.51
Psat4g145320.1 PsatbZIP36 466 51,591.52 5.99 56.20 74.81 -0.56
Psat4g145320.2 PsatbZIP37 466 51,591.52 5.99 56.20 74.81 -0.56
Psat4g145320.3 PsatbZIP38 503 56,110.78 6.29 52.34 75.69 -0.50
Psat6g229520.1 PsatbZIP39 428 47,858.61 6.11 50.76 84.60 -0.44
Psat6g121080.1 PsatbZIP40 451 50,390.06 6.98 63.60 78.38 -0.53
Psat7g166600.1 PsatbZIP41 326 37,331.21 5.54 63.83 61.35 -1.04
Psat0s1431g0080.5 PsatbZIP42 333 35,244.92 8.91 59.93 46.07 -0.84
Psat0s1431g0080.6 PsatbZIP43 333 35,244.92 8.91 59.93 46.07 -0.84
Psat4g091720.6 PsatbZIP44 238 25,483.68 5.74 64.89 46.05 -1.17
Psat4g158440.1 PsatbZIP45 463 50,338.88 6.08 50.80 62.63 -0.82
Psat4g178600.1 PsatbZIP46 656 72,876.78 5.18 38.10 78.52 -0.46
Psat5g115640.1 PsatbZIP47 312 34,010.34 6.56 42.06 55.35 -1.05
Psat3g145920.1 PsatbZIP48 161 18,535.46 8.76 57.28 50.81 -1.35
Psat2g051040.1 PsatbZIP49 370 40,257.45 6.31 58.07 59.70 -0.82
Psat5g148760.1 PsatbZIP50 383 41,879.97 6.15 49.13 53.86 -0.89
Psat7g181680.1 PsatbZIP51 531 59,049.13 6.89 65.93 57.91 -1.01
Psat7g181680.2 PsatbZIP52 531 59,049.13 6.89 65.93 57.91 -1.01
Psat7g181680.3 PsatbZIP53 474 52,589.17 7.32 63.37 59.30 -0.88
Psat7g181680.4 PsatbZIP54 474 52,589.17 7.32 63.37 59.30 -0.88
Psat0s3019g0160.2 PsatbZIP55 254 28,439.06 6.33 49.05 70.71 -0.65
Psat5g289760.1 PsatbZIP56 455 49,629.29 6.06 57.55 54.35 -0.96
Psat5g005640.1 PsatbZIP57 156 17,899.07 6.12 49.51 74.36 -0.68
Psat6g009600.1 PsatbZIP58 162 18,982.69 8.37 53.05 66.85 -0.77
Psat7g140160.1 PsatbZIP59 159 17,638.69 8.03 56.57 71.70 -0.60
Psat1g064080.1 PsatbZIP60 186 22,013.34 6.13 62.22 70.22 -1.04
Psat0s2991g0040.1 PsatbZIP61 140 15,986.20 6.86 56.55 87.21 -0.72
Psat3g034880.1 PsatbZIP62 483 54,474.93 8.97 73.68 63.85 -0.92

Fig. 1

Analysis of differential PastbZIP expression trend The expression trend of PastbZIP in 18 profiles. The number in the upper left corner represents the value of profile, and the number in the lower left corner represents the size of P value. Color labeling is a significant trend set, and no color labeling is not a significant trend set."

Fig. 2

Expression pattern and KEGG enrichment analysis of PastbZIP"

Fig. 3

Phylogenetic analysis of PastbZIP gene family in Arabidopsis thaliana and pea"

Fig. 4

Chromosomal localization of PastbZIP gene family members"

Fig. 5

Analysis of domains, motifs, and structures of PastbZIP family members (a): phylogenetic tree; (b): conserved domains; (c): conservative motif; (d): gene structure, CDS: coding sequence, UTR: untranslated region, lines indicate introns."

Fig. 6

Prediction of PastbZIP promoter cis-acting elements"

Fig. 7

Intraspecific colinearity analysis of PastbZIP gene family"

Table 3

Diversity time estimation of gene pairs in Pisum sativum"

基因对
Gene pairs
非同义替换Ka 同义替换Ks Ka/Ks 分离时间
Diversification time (Mya)
复制类型
Duplication type
PsatbZIP49 PsatbZIP50 0.201 0.922 0.218 30.73 片段复制Segmental
PsatbZIP35 PsatbZIP34 0.261 0.750 0.348 25.00 片段复制Segmental
PsatbZIP9 PsatbZIP21 0.458 1.356 0.338 45.20 片段复制Segmental
PsatbZIP26 PsatbZIP28 0.279 0.757 0.368 25.23 片段复制Segmental
PsatbZIP33 Psat7g188240.1 0.206 0.872 0.236 29.07 片段复制Segmental
Psat5g275000.1 PsatbZIP41 0.199 0.982 0.202 32.73 片段复制Segmental

Fig. 8

Interspecific collinearity analysis of bZIP gene family"

Table 4

Collinear genes between pea and other crops of bZIP gene family"

豌豆
Pea
大豆
Soybean
苜蓿
Medicago truncatula
拟南芥
Arabidopsis
蚕豆
Faba bean
PsatbZIP2 KRH35126 Medtr1g098590.1 Vf3g103200.1
PsatbZIP9 KRH32738, KRG96191 Medtr7g104480.1 AT2G36270.3 Vf5g119200.1
PsatbZIP10 Medtr8g043960.1
PsatbZIP12 KRG94991, KRH57716 Medtr7g088090.1
PsatbZIP16 KRG94991, KRH64894 Medtr7g088090.1
PsatbZIP20 KRH62689, KRH56273 Vf2g005920.1
PsatbZIP21 KRH22688, KRG96191 Medtr2g086340.1 Vf1g043440.1
PsatbZIP24 AT1G75390.1
PsatbZIP26 KRH34085, KRG96973, KRH68733 Medtr1g080920.1
Medtr7g115120.1
Vf5g145520.1
PsatbZIP29 KRG95102, KRH66771 Medtr7g089800.3 Vf5g083400.3
PsatbZIP33 KRH30432, KRH26635, KRH25227 Medtr4g053250.2 Vf1g043400.2
Vf6g014200.1
PsatbZIP34 KRH18833, KRH16629,
KRH64780, KRH53140
Medtr3g073560.1 AT1G77920.1 Vf1g163320.2
Vf2g068160.2
PsatbZIP38 KRH20680, KRH13334 Medtr8g040120.1 Vf4g029640.1
PsatbZIP39 KRH75411, KRH35977, KRG90784 Medtr1g111310.1 AT1G68640.1 Vf3g134600.1
PsatbZIP41 KRH25692, KRH27013
KRH22317, KRH55826
Medtr4g079500.1 Vf1g031360.1
Vf6g063160.1
PsatbZIP45 AT2G46270.1
PsatbZIP48 Medtr7g057160.1 Vf5g025920.1
PsatbZIP49 KRH17183, KRG98137, KRH72827 Medtr5g075390.1 Vf1g185400.1
Vf2g051160.1
PsatbZIP50 KRH17183, KRG98137, KRH72827 Medtr3g467120.1
Medtr5g075390.1
Vf2g051160.1
PsatbZIP51 KRH29330, KRH24356 AT4G38900.1
PsatbZIP56 KRH29611, KRH24606, KRH10117 Medtr2g099050.1 Vf1g018400.1
PsatbZIP57 KRH24436, KRH60802, KRH51497 Medtr3g117120.1 AT4G34590.1 Vf2g175760.1
PsatbZIP58 KRH15149, KRH05862 Medtr1g022495.1 AT1G75390.1 Vf3g189120.1
PsatbZIP59 KRH29414, KRH24436
PsatbZIP60 KRH18312, KRH01443
KRG93749, KRH45160
Medtr6g016375.1 Vf1g010720.1
PsatbZIP62 Medtr7g104190.1

Table 5

Candidate genes related to pea seed development"

候选基因
Candidate gene
功能
Function
拟南芥同源基因
Arabidopsis homologous gene
参考文献
Reference
PsatbZIP9 调控种子成熟和大小Regulating seed maturity and size AT2G36270 (ABI5) [38-39]
PsatbZIP21 调节种子脂肪酸组成Regulating fatty acid composition of seeds AT3G44460 (DPBF2) [40]
PsatbZIP22
PsatbZIP23
PsatbZIP47 调控淀粉合成Regulating starch synthesis AT5G11260 (HY5) [41]
PsatbZIP48
PsatbZIP57 调节糖分含量变化Regulating the change of sugar content AT4G34590 (bZIP11) [42]
PsatbZIP58
PsatbZIP59
PsatbZIP61 调控种子成熟Regulating seed maturation AT3G62420 (bZIP53) [43]

Fig. 9

Protein interaction network prediction and qRT-PCR verification of seed development candidate gene in pea"

[1] Gudko V, Usatov A, Minkina T, Duplii N, Azarin K, Tatarinova T V, Sushkova S, Garg A, Denisenko Y. Dependence of the pea grain yield on climatic factors under semi-arid conditions. Agronomy, 2024, 14: 133.
[2] Yan L C, Xu Y, Yang F, Shi C H, Liu Y, Bi S. Characterization of odor profiles of pea milk varieties and identification of key odor-active compounds by molecular sensory science approaches using soybean milk as a reference. Food Chem, 2024, 445: 138696.
[3] Shanthakumar P, Klepacka J, Bains A, Chawla P, Dhull S B, Najda A. The current situation of pea protein and its application in the food industry. Molecules, 2022, 27: 5354.
[4] Li H Y, Lv Q Y, Deng J, Huang J, Cai F, Liang C G, Chen Q J, Wang Y, Zhu L W, Zhang X N, et al. Transcriptome analysis reveals key seed-development genes in common buckwheat (Fagopyrum esculentum). Int J Mol Sci, 2019, 20: 4303.
[5] Liu N, Zhang G W, Xu S C, Mao W H, Hu Q Z, Gong Y M. Comparative transcriptomic analyses of vegetable and grain pea (Pisum sativum L.) seed development. Front Plant Sci, 2015, 6: 1039.
doi: 10.3389/fpls.2015.01039 pmid: 26635856
[6] Savadi S. Molecular regulation of seed development and strategies for engineering seed size in crop plants. Plant Growth Regul, 2018, 84: 401-422.
[7] Le B H, Cheng C, Bui A Q, Wagmaister J A, Henry K F, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, et al. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci USA, 2010, 107: 8063-8070.
[8] Xue L J, Zhang J J, Xue H W. Genome-wide analysis of the complex transcriptional networks of rice developing seeds. PLoS One, 2012, 7: e31081.
[9] Kushwaha S K, Grimberg Å, Carlsson A S, Hofvander P. Charting oat (Avena sativa) embryo and endosperm transcription factor expression reveals differential expression of potential importance for seed development. Mol Genet Genomics, 2019, 294: 1183-1197.
doi: 10.1007/s00438-019-01571-x pmid: 31073872
[10] Basnet R K, Moreno-Pachon N, Lin K, Bucher J, Visser R G F, Maliepaard C, Bonnema G. Genome-wide analysis of coordinated transcript abundance during seed development in different Brassica rapa morphotypes. BMC Genomics, 2013, 14: 840.
doi: 10.1186/1471-2164-14-840 pmid: 24289287
[11] Kohl S, Hollmann J, Erban A, Kopka J, Riewe D, Weschke W, Weber H. Metabolic and transcriptional transitions in barley glumes reveal a role as transitory resource buffers during endosperm filling. J Exp Bot, 2015, 66: 1397-1411.
doi: 10.1093/jxb/eru492 pmid: 25617470
[12] Dröge-Laser W, Snoek B L, Snel B, Weiste C. The Arabidopsis bZIP transcription factor family-an update. Curr Opin Plant Biol, 2018, 45: 36-49.
doi: S1369-5266(17)30215-7 pmid: 29860175
[13] Jiang N Q, Wang L N, Lan Y G, Liu H X, Zhang X Y, He W, Wu M, Yan H W, Xiang Y. Genome-wide identification of the Carya illinoinensis bZIP transcription factor and the potential function of S1-bZIPs in abiotic stresses. Tree Genet Genomes, 2023, 19: 47.
[14] Liang Y, Xia J Q, Jiang Y S, Bao Y Z, Chen H C, Wang D J, Zhang D, Yu J, Cang J. Genome-wide identification and analysis of bZIP gene family and resistance of TaABI5 (TabZIP96) under freezing stress in wheat (Triticum aestivum). Int J Mol Sci, 2022, 23: 2351.
[15] Huang L T, Liu C Y, Li L, Han X S, Chen H W, Jiao C H, Sha A H. Genome-wide identification of bZIP transcription factors in faba bean based on transcriptome analysis and investigation of their function in drought response. Plants (Basel), 2023, 12: 3041.
[16] Han P C, Yin T, Xi D X, Yang X Y, Zhang M J, Zhu L, Zhang H Y, Liu X Z. Genome-wide identification of the sweet orange bZIP gene family and analysis of their expression in response to infection by Penicillium digitatum. Horticulturae, 2023, 9: 393.
[17] Liu H T, Tang X, Zhang N, Li S G, Si H J. Role of bZIP transcription factors in plant salt stress. Int J Mol Sci, 2023, 24: 7893.
[18] Zhong X J, Feng X Q, Li Y L, Guzmán C, Lin N, Xu Q, Zhang Y Z, Tang H P, Qi P F, Deng M, et al. Genome-wide identification of bZIP transcription factor genes related to starch synthesis in barley (Hordeum vulgare L.). Genome, 2021, 64: 1067-1080.
[19] Niu B X, Deng H, Li T T, Sharma S, Yun Q B, Li Q R, Zhiguo E, Chen C. OsbZIP76 interacts with OsNF-YBs and regulates endosperm cellularization in rice (Oryza sativa). J Integr Plant Biol, 2020, 62: 1983-1996.
[20] Wang J C, Xu H, Zhu Y, Liu Q Q, Cai X L. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J Exp Bot, 2013, 64: 3453-3466.
[21] Dong Q, Xu Q Q, Kong J J, Peng X J, Zhou W, Chen L, Wu J D, Xiang Y, Jiang H Y, Cheng B J. Overexpression of ZmbZIP22 gene alters endosperm starch content and composition in maize and rice. Plant Sci, 2019, 283: 407-415.
[22] Chen J, Yi Q, Cao Y, Wei B, Zheng L J, Xiao Q L, Xie Y, Gu Y, Li Y P, Huang H H, et al. ZmbZIP91 regulates expression of starch synthesis-related genes by binding to ACTCAT elements in their promoters. J Exp Bot, 2016, 67: 1327-1338.
[23] Song Y H, Luo G B, Shen L S, Yu K, Yang W L, Li X, Sun J Z, Zhan K H, Cui D Q, Liu D C, et al. TubZIP28, a novel bZIP family transcription factor from Triticum urartu, and TabZIP28, its homologue from Triticum aestivum, enhance starch synthesis in wheat. New Phytol, 2020, 226: 1384-1398.
[24] Wang J, Wang Y, Wu X Y, Wang B G, Lu Z F, Zhong L P, Li G J, Wu X H. Insight into the bZIP gene family in Lagenaria siceraria: genome and transcriptome analysis to understand gene diversification in Cucurbitaceae and the roles of LsbZIP gene expression and function under cold stress. Front Plant Sci, 2023, 13: 1128007.
[25] Wang P, Li Y X, Zhang T T, Kang Y Q, Li W, Wang J, Yu W G, Zhou Y. Identification of the bZIP gene family and investigation of their response to drought stress in Dendrobium catenatum. Agronomy, 2023, 13: 236.
[26] Hwang I, Jung H J, Park J I, Yang T J, Nou I S. Transcriptome analysis of newly classified bZIP transcription factors of Brassica rapa in cold stress response. Genomics, 2014, 104: 194-202.
[27] Cao L R, Lu X M, Zhang P Y, Wang G R, Wei L, Wang T C. Systematic analysis of differentially expressed maize ZmbZIP genes between drought and rewatering transcriptome reveals bZIP family members involved in abiotic stress responses. Int J Mol Sci, 2019, 20: 4103.
[28] Kreplak J, Madoui M A, Cápal P, Novák P, Labadie K, Aubert G, Bayer P E, Gali K K, Syme R A, Main D, et al. A reference genome for pea provides insight into legume genome evolution. Nat Genet, 2019, 51: 1411-1422.
doi: 10.1038/s41588-019-0480-1 pmid: 31477930
[29] Punta M, Coggill P C, Eberhardt R Y, Mistry J, Tate J, Boursnell C, Pang N Z, Forslund K, Ceric G, Clements J, et al. The pfam protein families database. Nucleic Acids Res, 2012, 40: D290-D301.
[30] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[31] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550.
[32] Sajjad M, Xue S D, Zhou M J, Li G H, Xu Y C, Liu L, Zhu J T, Meng Q T, Jin Q M, Du H, et al. Decoding comparative taste and nutrition regulation in Chinese cabbage via integrated metabolome and transcriptome analysis. Food Res Int, 2024, 195: 114943.
[33] Ye S H, Yang J, Huang Y Y, Liu J, Ma X W, Zhao L, Ma C Z, Tu J X, Shen J X, Fu T D, et al. Bulk segregant analysis-sequencing and RNA-Seq analyses reveal candidate genes associated with albino phenotype in Brassica napus. Front Plant Sci, 2022, 13: 994616.
[34] Subramanian B, Gao S H, Lercher M J, Hu S N, Chen W H. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res, 2019, 47: W270-W275.
[35] Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F, Group B R. bZIP transcription factors in Arabidopsis. Trends Plant Sci, 2002, 7: 106-111.
doi: 10.1016/s1360-1385(01)02223-3 pmid: 11906833
[36] Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208.
[37] Ahmad B, Azeem F, Ali M A, Nawaz M A, Nadeem H, Abbas A, Batool R, Atif R M, Ijaz U, Nieves-Cordones M, et al. Genome-wide identification and expression analysis of two component system genes in Cicer arietinum. Genomics, 2020, 112: 1371-1383.
[38] Cheng Z J, Zhao X Y, Shao X X, Wang F, Zhou C, Liu Y G, Zhang Y, Zhang X S. Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of SHORT HYPOCOTYL UNDER BLUE1. Plant Cell, 2014, 26: 1053-1068.
[39] Bensmihen S, Giraudat J, Parcy F. Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during Arabidopsis thaliana embryo maturation. J Exp Bot, 2005, 56: 597-603.
doi: 10.1093/jxb/eri050 pmid: 15642716
[40] Kim I, Lee K R, Park M E, Kim H U. The seed-specific transcription factor DPBF2 modulates the fatty acid composition in seeds. Plant Direct, 2022, 6: e395.
doi: 10.1002/pld3.395 pmid: 35388372
[41] Shi Q B, Xia Y, Xue N, Wang Q B, Tao Q, Li M J, Xu D, Wang X F, Kong F Y, Zhang H S, et al. Modulation of starch synthesis in Arabidopsis via phytochrome B-mediated light signal transduction. J Integr Plant Biol, 2024, 66: 973-985.
[42] Sagor G H M, Berberich T, Tanaka S, Nishiyama M, Kanayama Y, Kojima S, Muramoto K, Kusano T. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene. Plant Biotechnol J, 2016, 14: 1116-1126.
doi: 10.1111/pbi.12480 pmid: 26402509
[43] Jain P, Shah K, Rishi V. Potential in vitro and ex vivo targeting of bZIP53 involved in stress response and seed maturation in Arabidopsis thaliana by five designed peptide inhibitors. Biochim Biophys Acta Proteins Proteom, 2018, 1866: 1249-1259.
[44] Rahman S, Rehman A, Waqas M, Mubarik M S, Alwutayd K, AbdElgawad H, Jalal A, Azeem F, Rizwan M. Genome-wide exploration of bZIP transcription factors and their contribution to alkali stress response in Helianthus annuus. Plant Stress, 2023, 10: 100204.
[45] Gallego-Giraldo C, Hu J H, Urbez C, Gomez M D, Sun T P, Perez-Amador M A. Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis. Plant J, 2014, 79: 1020-1032.
[46] Bartrina I, Otto E, Strnad M, Werner T, Schmülling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell, 2011, 23: 69-80.
[47] Batista R A, Figueiredo D D, Santos-González J, Köhler C. Auxin regulates endosperm cellularization in Arabidopsis. Genes Dev, 2019, 33: 466-476.
[48] Wu C J, Shan W, Liang S M, Zhu L S, Guo Y F, Chen J Y, Lu W J, Li Q F, Su X G, Kuang J F. MaMPK2 enhances MabZIP93-mediated transcriptional activation of cell wall modifying genes during banana fruit ripening. Plant Mol Biol, 2019, 101: 113-127.
doi: 10.1007/s11103-019-00895-x pmid: 31300998
[49] Fatihi A, Boulard C, Bouyer D, Baud S, Dubreucq B, Lepiniec L. Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds. Plant Sci, 2016, 250: 198-204.
doi: S0168-9452(16)30132-7 pmid: 27457996
[50] Agarwal P, Kapoor S, Tyagi A K. Transcription factors regulating the progression of monocot and dicot seed development. Bioessays, 2011, 33: 189-202.
doi: 10.1002/bies.201000107 pmid: 21319185
[51] Tan H L, Yang X H, Zhang F X, Zheng X, Qu C M, Mu J Y, Fu F Y, Li J N, Guan R Z, Zhang H S, et al. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol, 2011, 156: 1577-1588.
[52] Kirkbride R C, Fischer R L, Harada J J. LEAFY COTYLEDON1, a key regulator of seed development, is expressed in vegetative and sexual propagules of Selaginella moellendorffii. PLoS One, 2013, 8: e67971.
[53] Lee S W, Choi D, Moon H, Kim S, Kang H, Paik I, Huq E, Kim D H. PHYTOCHROME-INTERACTING FACTORS are involved in starch degradation adjustment via inhibition of the carbon metabolic regulator QUA-QUINE STARCH in Arabidopsis. Plant J, 2023, 114: 110-123.
[54] Liu Z J, Zheng L M, Pu L, Ma X F, Wang X, Wu Y, Ming H N, Wang Q, Zhang G F. ENO2 affects the seed size and weight by adjusting cytokinin content and forming ENO2-bZIP75 complex in Arabidopsis thaliana. Front Plant Sci, 2020, 11: 574316.
[55] Jain P, Shah K, Sharma N, Kaur R, Singh J, Vinson C, Rishi V. A-ZIP53, a dominant negative reveals the molecular mechanism of heterodimerization between bZIP53, bZIP10 and bZIP25 involved in Arabidopsis seed maturation. Sci Rep, 2017, 7: 14343.
[1] LIN Wei-Jin, GUO Ze-Jia, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, CHEN Xiao-Ping, HONG Yan-Bin, LI Shao-Xiong, LU Qing. QTL mapping and candidate gene analysis of peanut pod yield-related traits [J]. Acta Agronomica Sinica, 2025, 51(4): 969-981.
[2] CHI Xiao-Yuan, BI Jing-Nan, ZHAO Jian-Xin, CHEN Na, PAN Li-Juan, JIANG Xiao, YIN Xiang-Zhen, ZHAO Xu-Hong, MA Jun-Qing, XU Jing. Evaluation of mechanical properties of peanut pods and screening of early maturing germplasm [J]. Acta Agronomica Sinica, 2025, 51(4): 943-957.
[3] GUO Bing, QIN Jia-Fan, LI Na, SONG Meng-Yao, WANG Li-Ming, LI Jun-Xia, MA Xiao-Qian. Genome-wide identification and expression analysis of SHMT gene family in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2025, 51(3): 586-5897.
[4] JIN Gao-Rui, WU Xiao-Li, DENG Li, CHEN Yu-Ning, YU Bo-Lun, GUO Jian-Bin, DING Ying-Bin, LIU Nian, LUO Huai-Yong, CHEN Wei-Gang, HUANG Li, ZHOU Xiao-Jing, HUAI Dong-Xin, TAN Jia-Zhuang, JIANG Hui-Fang, REN Li, LEI Yong, LIAO Bo-Shou. Development and characterization of novel peanut genetic stocks with high oleic acid and enhanced resistance both to Aspergillus flavus infection and aflatoxin production [J]. Acta Agronomica Sinica, 2025, 51(3): 687-895.
[5] JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811.
[6] ZHAO Fei-Fei, LI Shao-Xiong, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, HONG Yan-Bin, CHEN Xiao-Ping, LU Qing, CAO Yu-Man. Association mapping of internode and lateral branch internode length of peanut main stem and analysis of candidate genes [J]. Acta Agronomica Sinica, 2025, 51(2): 548-556.
[7] HU Peng-Ju, GUO Song, SONG Ya-Hui, JIN Xin-Xin, SU Qiao, YANG Yong-Qing, WANG Jin. Genetic and QTL mapping analysis of oil content in peanut across multiple environments [J]. Acta Agronomica Sinica, 2025, 51(2): 324-333.
[8] WANG Run-Feng, LI Wen-Jia, LIAO Yong-Jun, LU Qing, LIU Hao, LI Hai-Fen, LI Shao-Xiong, LIANG Xuan-Qiang, HONG Yan-Bin, CHEN Xiao-Ping. Evaluation of pod maturity and identification of early-maturing germplasm for core peanut germplasm resources [J]. Acta Agronomica Sinica, 2025, 51(2): 395-404.
[9] WANG Yuan, XU Jia-Yin, DONG Er-Wei, WANG Jin-Song, LIU Qiu-Xia, HUANG Xiao-Lei, JIAO Xiao-Yan. Effects of manure replacement of chemical fertilizer nitrogen on yield, nitrogen accumulation, and quality of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(1): 149-160.
[10] QI Jia-Min, XU Chun-Miao, XIAO Bin. Genome-wide identification and expression analysis of TIFY gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2297-2309.
[11] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[12] LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166.
[13] HE Dan-Dan, SHU Ya-Zhou, ZHOU Hai-Lian, WU Song-Guo, WEI Xiao-Shuang, YANG Ming-Chong, LI Bo, WU Zheng-Dan, HAN Shi-Jian, YANG Juan, WANG Ji-Bin, WANG Ling-Qiang. OsRPTA18 participated in the regulation of leaf inclination in rice [J]. Acta Agronomica Sinica, 2024, 50(8): 1934-1947.
[14] ZHU Rong-Yu, ZHAO Meng-Jie, YAO Yun-Feng, LI Yan-Hong, LI Xiang-Dong, LIU Zhao-Xin. Effects of straw returning methods and sowing depth on soil physical properties and emergence characteristics of summer peanut [J]. Acta Agronomica Sinica, 2024, 50(8): 2106-2121.
[15] HUANG Shu-Xian, LIU Rong, LI Guan, SHU Qin, XU Fei, ZONG Xu-Xiao, YANG Tao. Establishment of large fragment knockout in pea genome by CRISPR/Cas9 technology [J]. Acta Agronomica Sinica, 2024, 50(7): 1658-1668.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!