Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Spatial genetic structure characteristics of natural populations of Glycine tomentella in two representative habitats in the southeast coast, China—a study of intrapopulation sampling strategy

WANG Hao-Chen1,2,WANG Ke-Jing1,HAN Juan2,*,LI Xiang-Hua1,*#br#

#br#
  

  1. 1 Resource Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 College of Agriculture, Northwest Agriculture & Forestry University, Yangling 712100, Shaanxi, China
  • Received:2025-03-21 Revised:2025-08-13 Accepted:2025-08-13 Published:2025-08-21
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2021YFD1200103).

Abstract: Glycine tomentella is an important genetic resource in China, classified as a nationally protected plant (second-class), and holds significant potential for use in cultivated soybean breeding. Due to its self-pollinating nature and environmental heterogeneity, gene flow is limited, and individuals within G. tomentella populations often exhibit spatial genetic patchiness. To investigate the genetic structure of two primary habitat types in China—highly human-disturbed populations (cemetery natural populations) and minimally disturbed populations (flatland natural populations)—and to provide a theoretical basis for developing sampling strategies that preserve high levels of genetic diversity, this study employed 24 newly developed species-specific SSR markers to analyze genetic diversity and spatial genetic structure in two natural populations subject to different degrees of disturbance. The results showed that: (1) the average genetic diversity of the highly disturbed cemetery population (B) was not lower than that of the less disturbed natural population (A); (2) spatial autocorrelation analysis revealed that individuals in both populations exhibited genetic patch structures, with differing patch sizes: population A showed significant kinship within 17.44 m, while population B showed significant kinship within 14.59 m; (3) spatial autocorrelation and Mantel tests indicated that in highly disturbed populations, genetic relatedness between individuals declined with spatial distance, and the range of significant autocorrelation was reduced; (4) Python-based sampling simulations showed that to reach 95% of the total population values for Nei’s gene diversity index, Shannon’s information index and effective number of alleles at least 20, 30 and 30 individuals needed to be sampled in population A, and 20, 35, and 50 individuals in population B, respectively. Based on these findings, it is recommended that for routine germplasm collection of G. tomentella, a minimum of 30 individuals should be sampled, with an inter-plant spacing of 15–18 m.

Key words: sampling strategy, genetic structure, genetic diversity, SSR markers, Glycine tomentella

[1] Singh R J, Chung G H, Nelson R L. Landmark research in legumes. Genome, 2007, 50: 525–537.

[2] 王克晶, 张郑伟, 李向华. 我国大豆属多年生种遗传资源研究. 中国种业, 2023(12): 6775.

Wang K J, Zhang Z W, Li X H. Studies on perennial species genetic resources of Chinese genus soybean (Glycine Willd.). China Seed Ind, 2023, (12): 67–75 (in Chinese with English abstract).

[3] Hwang E Y, Wei H, Schroeder S G, Fickus E W, Quigley C V, Elia P, Araya S, Dong F, Costa L, Ferreira M E, et al. Genetic diversity and phylogenetic relationships of annual and perennial Glycine species. G3: Gene Genom Genet, 2019, 9: 2325–2336.

[4] Wen L, Yuan C, Herman T K, Hartman G L. Accessions of perennial Glycine species with resistance to multiple types of soybean cyst nematode (Heterodera glycines). Plant Dis, 2017, 101: 1201–1206.

[5] Herman T K, Han J, Singh R J, Domier L L, Hartman GL. Evaluation of wild perennial Glycine species for resistance to soybean cyst nematode and soybean rust. Plant Breed, 2020, 139: 923–931.

[6] Kao W Y, Tsai T T. Tropic leaf movements, photosynthetic gas exchange, leaf d13C and chlorophyll a fluorescence of three soybean species in response to water availability. Plant Cell Environ, 1998, 21: 1055–1062.

[7] Kao W Y, Tsai T T, Tsai H C, Shih C N. Response of three Glycine species to salt stress. Environ Exp Bot, 2006, 56: 120–125.

[8] Lenis J M, Ellersieck M, Blevins D G, Sleper D A, Nguyen H T, Dunn D, Lee J D, Shannon J G. Differences in ion accumulation and salt tolerance among Glycine accessions: differences in salt tolerance among Glycine accessions. J Agron Crop Sci, 2011, 197: 302–310.

[9] Singh R J, Nelson R L. Intersubgeneric hybridization between Glycine max and G tomentella: production of F1, amphidiploid, BC1, BC2, BC3, and fertile soybean plants. Theor Appl Genet, 2015, 128: 1117−1136.

[10] 罗冉, 吴委林, 张旸, 李玉花. SSR分子标记在作物遗传育种中的应用. 基因组学与应用生物学, 2010, 29: 137–143.
Luo R, Wu W L, Zhang Y, Li Y H. SSR marker and its application to crop genetics and breeding. Genom Appl Biol, 2010, 29: 137–143 (in Chinese with English abstract).

[11] Tautz D, Trick M, Dover G A. Cryptic simplicity in DNA is a major source of genetic variation. Nature, 1986, 322: 652–656.

[12] 李新海, 傅骏骅, 张世煌, 袁力行, 李明顺. 利用SSR标记研究玉米自交系的遗传变异. 中国农业科学, 2000, 33: 1–9.

Li X H, Fu J H, Zhang S H, Yuan L X, Li M S. Genetic variation of inbred lines of maize detected by SSR markers. Sci Agric Sin, 2000, 33: 1–9 (in Chinese with English abstract).

[13] 文自翔, 赵团结, 郑永战, 刘顺湖, 王春娥, 王芳, 盖钧镒. 中国栽培和野生大豆农艺品质性状与SSR标记的关联分析I. 群体结构及关联标记. 作物学报, 2008, 34: 1169–1178.
Wen Z X, Zhao T J, Zheng Y Z, Liu S H, Wang C E, Wang F, Gai J Y. Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: I. Population structure and associated markers. Acta Agron Sin, 2008, 34: 1169–1178 (in Chinese with English abstract). 

[14] 周雨晴, 戴文婧, 杨羽清, 姚森洋, 周圆, 程智慧, 潘玉朋. 基于SSR标记的126份甜瓜种质遗传多样性分析. 西北农业学报, 2025, 34: 54−62.
Zhou Y Q, Dai W J, Yang Y Q, Yao S Y, Zhou Y, Cheng Z H, Pan Y P. Genetic diversity analysis of 126 melon germplasms based on SSR markers. Acta Agric Boreali-Occident Sin, 2025, 34: 54−62 (in Chinese with English abstract).

[15] 齐广勋, 王英男, 袁翠平, 王玉民, 刘晓冬, 李玉秋, 董英山, 赵洪锟. 基于SSR标记的不同地理生态型野生大豆遗传多样性分析. 大豆科学, 2021, 40: 334–343.

Qi G X, Wang Y N, Yuan C P, Wang Y M, Liu X D, Li Y Q, Dong Y S, Zhao H K. Genetic diversity analysis of wild soybean (Glycine soja) populations with different geographical ecotypes based on SSR markers. Soybean Sci, 2021, 40: 334–343 (in Chinese with English abstract).

[16] Takahashi Y, Li X H, Tsukamoto C, Wang K J. Categories and components of soyasaponin in the Chinese wild soybean (Glycine soja) genetic resource collection. Genet Resour Crop Evol, 2017, 64: 2161–2171.

[17] Wen Z X, Ding Y L, Zhao T J, Gai J Y. Genetic diversity and peculiarity of annual wild soybean (G. soja Sieb. et Zucc.) from various eco-regions in China. Theor Appl Genet, 2009, 119: 371–381.

[18] Kim K H, Lee S, Seo M J, Lee G A, Ma K H, Jeong S C, Lee S H, Park E H, Kwon Y U, Moon J K. Genetic diversity and population structure of wild soybean (Glycine soja Sieb. and Zucc.) accessions in Korea. Plant Genet Resour. 2014, 12: S45−S48.

[19] Li F, Sayama T, Yokota Y, Hiraga S, Hashiguchi M, Tanaka H, Akashi R, Ishimoto M. Assessing genetic diversity and geographical differentiation in a global collection of wild soybean (Glycine soja Sieb. et Zucc.) and assigning a mini-core collection. DNA Res, 2024, 31: dsae009.

[20] Wang X D, Li X H, Zhang Z W, Wang K J. Characterization of genetic diversity and structures in natural Glycine tomentella populations on the southeast islands of China. Genet Resour Crop Evol, 2019, 66: 47−59.

[21] 张郑伟. 中国多年生野生大豆Glycine tomentellaGlycine tabacina的遗传多样性研究. 中国农业科学院博士学位论文, 北京, 2020.
Zhang Z W. The Genetic Diversity Studies on Chinese Perennial Wild Soybean Glycine tomentella and Glycine tabacina. A PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2020 (in Chinese with English abstract). 

[22] 金燕, 卢宝荣. 遗传多样性的取样策略. 生物多样性, 2003, 11: 155−161.
Jin Y, Lu B R. Sampling strategy for genetic diversity. Biodivers Sci, 2003, 11: 155−161 (in Chinese with English abstract). 

[23] 黎裕, 王天宇, 田松杰, 石云素, 宋燕春. 利用分子标记分析遗传多样性时的玉米群体取样策略研究植物遗传资源学报, 2003, 4: 314-317.
Li Y, Wang T Y, Tian S J, Shi Y S, Song Y C. Sampling strategies of maize populations when molecular markers are used in genetic diversity analysis. J Plant Genet Resour, 2003, 4: 314−317 (in Chinese with English abstract).

[24] 陈坚, 林新坚, 钟少杰. 取样策略对SSR标记鉴别紫云英品种能力的影响. 植物遗传资源学报, 2015, 16: 1245−1251.
Chen J, Lin X J, Zhong S J. Effect of sampling strategy on identification of cultivars of Astragalus sinicus L. by SSR marker. J Plant Genet Resour, 2015, 16: 1245−1251 (in Chinese with English abstract).

[25] Zhao R, Cheng Z, Lu W F, Lu B R. Estimating genetic diversity and sampling strategy for a wild soybean (Glycine soja) population based on different molecular markers. Chin Sci Bull, 2006, 51: 1219−1227.

[26] 朱维岳, 周桃英, 钟明, 卢宝荣. 基于遗传多样性和空间遗传结构的野生大豆居群采样策略. 复旦学报(自然科学版), 2006, 45: 321−327.
Zhu W Y, Zhou T Y, Zhong M, Lu B R. Sampling strategy for wild soybean (Glycine soja) populations based on their genetic diversity and fine-scale spatial genetic structure. J Fudan Univ (Nat Sci), 2006, 45: 321−327 (in Chinese with English abstract).

[27] Narzary D, Verma S, Mahar K S, Rana T S. A rapid and effective method for isolation of genomic DNA from small amount of silica-dried leaf tissues. Natl Acad Sci Lett, 2015, 38: 441–444.

[28] Brown A H D, Moran G F. lsozymes and the genetic resources of forest trees. In: Conkle M T. eds. lsozymes of North American Forest Trees and Forest Insects. Pacific South West Forest and Range Experiment Station Technical Report No.48, US Department of Agriculture, PSW-GTR, 1981. pp 1–10.

[29] Marshall D R, Brown A H D. Optimum sampling strategies in genetic conservation. In: Frankel O H, Hawles J G, eds. Crop Genetic Resource for Today and Tomorrow. London: Cambridge University Press, 1975. pp 53−80.

[30] Jin Y, Zhang W J, Fu D X, Lu B R. Sampling strategy within a wild soybean population based on its genetic variation detected by ISSR markers. J Integr Plant Biol, 2003, 45, 995.

[31] 李磊, 郭蓉, 杜光辉, 郭鸿彦, 吕品, 许艳萍, 郭孟璧, 张园, 陈璇, 等. 基于SSR标记的大麻遗传多样性分析与品种鉴别的取样策略. 分子植物育种, 网络首发[2023-12-12], https://link.cnki.net/urlid/46.1068.S.20231211.1122.002.
Li L, Guo R, Du G H, Guo H Y, Lyu P, Xu Y P, Guo M B, Zhang Y, Chen X, et al. Sampling strategy for genetic diversity analysis and variety identification of hemp (Cannabis sativa L.) based on SSR markers. Mol Plant BreedPublished online [2023-12-12], https://link.cnki.net/urlid/46.1068.S.20231211.1122.002 (in Chinese with English abstract).

[32] 李乔乔, 王宇晴, 刘蕊, 邳植, 吴则东. 利用SSR分子标记探究甜菜种质资源的取样策略. 分子植物育种, 网络首发[2022-05-23],. https://kns.cnki.net/kcms/detail/46.1068.S.20220520.1754.017.html.
Li Q Q, Wang Y Q, Liu R, Pi Z, Wu Z D. Exploring the sampling strategy of sugar beet germplasm by SSR molecular markers. Mol Plant Breed, 2022, Published online [2022-05-23], https://kns.cnki.net/kcms/detail/46.1068.S.20220520.1754.017.html (in Chinese with English abstract).

[33] 张红香, 周道玮. 种子生态学研究现状. 草业科学, 2016, 33: 2221–2236.
Zhang H X, Zhou D W. Current status in seed ecology. Pratac Sci, 2016, 33: 2221–2236 (in Chinese with English abstract).

[34] Guillot G, Leblois R, Coulon A, Frantz A C. Statistical methods in spatial genetics. Mol Ecol, 2009, 18: 4734–4756.

[35] 于顺利, 郎南军, 彭明俊, 赵琳, 郭永清, 郑科, 张立新, 温绍龙, 李晖. 种子雨研究进展. 生态学杂志, 2007, 26: 1646–1652.
Yu S L, Lang N J, Peng M J, Zhao L, Guo Y Q, Zheng K, Zhang L X, Wen S L, Li H. Research advances in seed rain. Chin J Ecol, 2007, 26: 1646–1652 (in Chinese with English abstract).

[36] 李军, 郑师章, 钱吉, 任文伟, 叶培宏. 野生大豆种子雨的研究. 应用生态学报, 1997, 8: 372–376
Li J, Zheng S Z, Qian J, Ren W W, Ye P H. Seed rain of Glycine soja. Chin J Appl Ecol, 1997, 8: 372−376 (in Chinese with English abstract).

[37] 王克晶, 李向华. 中国野生大豆遗传资源搜集基本策略与方法. 植物遗传资源学报, 2012, 13: 325–334.
Wang K J, Li X H. Fundamental strategies and methods for collection of wild soybean germplasm resources in China. J Plant Genet Resour, 2012, 13: 325–334 (in Chinese with English abstract).

[38] 何田华, 杨继, 饶广远. 植物居群遗传变异的空间自相关分析. 植物学通报, 1999, 16: 636641.

He T H, Yang J, Rao G Y. Spatial autocorrelation analysis of plant population genetic variation. Chin Bull Bot, 1999, 16: 636–641 (in Chinese with English abstract).

[39] Connell J H. Diversity in tropical rain forests and coral reefs. Science, 1978, 199: 1302–1310.

[40] Sousa W P. The role of disturbance in natural communities. Annu Rev Ecol Syst1984, 15: 353–391.

[41] Wilkinson D M. The disturbing history of intermediate disturbance. Oikos, 1999, 84: 145−147.

[1] WANG Tian-Yi, YANG Xiu-Juan, ZHAO Jia-Jia, HAO Yu-Qiong, ZHENG Xing-Wei, WU Bang-Bang, LI Xiao-Hua, HAO Shui-Yuan, ZHENG Jun. Gliadin diversity and its effects on flour quality in wheat from Shanxi province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1784-1800.
[2] MENG Xiang-Yu, DIAO Deng-Chao, LIU Ya-Rui, LI Yun-Li, SUN Yu-Chen, WU Wei, ZHAO Wen, WANG Yu, WU Jian-Hui, LI Chun-Lian, ZENG Qing-Dong, HAN De-Jun, ZHENG Wei-Jun. Genetic analysis of high yield and yield stability characteristics of new wheat variety Xinong 877 [J]. Acta Agronomica Sinica, 2025, 51(5): 1261-1276.
[3] ZHANG Hong-Yan, MIN Yu-Xia, TENG Chang-Cai, PENG Xiao-Xing, CHEN Zhi-Kai, ZHOU Xian-Li, LOU Shu-Bao, LIU Yu-Jiao. Genetic diversity analysis of Chinese faba bean (Vicia faba L.) germplasm resources using 130K liquid phase chips [J]. Acta Agronomica Sinica, 2024, 50(8): 1989-2000.
[4] LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502.
[5] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[6] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[7] SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593.
[8] WANG Qian, ZHANG Li-Yuan, XU Yue, LI Hai, LIU Shao-Xiong, XUE Ya-Peng, LU Ping, WANG Rui-Yun, LIU Min-Xuan. High motif EST-SSR markers development and genetic diversity evaluation for 200 core germplasms in proso millet [J]. Acta Agronomica Sinica, 2023, 49(8): 2308-2318.
[9] LU Mao-Ang, PENG Xiao-Ai, ZHANG Ling, WANG Jian-Lai, HE Xian-Fang, ZHU Yu-Lei. Genetic diversity of wheat breeding parents revealed by 55K SNP-based microarray [J]. Acta Agronomica Sinica, 2023, 49(6): 1708-1714.
[10] CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261.
[11] LI Ying, LIU Hai-Cui, SHI Lyu, SHI Xiao-Xu, HAN Xiao, LIU Jian, WEI Ya-Feng. Genetic diversity and population structure analysis of naked barley germplasm resources in Jiangsu province [J]. Acta Agronomica Sinica, 2023, 49(10): 2687-2697.
[12] YAO Zhu-Fang, ZHANG Xiong-Jian, YANG Yi-Ling, HUANG Li-Fei, CHEN Xin-Liang, YAO Xiao-Jian, LUO Zhong-Xia, CHEN Jing-Yi, WANG Zhang-Ying, FANG Bo-Ping. Genetic diversity of phenotypic traits in 177 sweetpotato landrace [J]. Acta Agronomica Sinica, 2022, 48(9): 2228-2241.
[13] WANG Rong, CHEN Xiao-Hong, WANG Qian, LIU Shao-Xiong, LU Ping, DIAO Xian-Min, LIU Min-Xuan, WANG Rui-Yun. Genetic diversity and genetic relationship of Chinese traditional foxtail millet accessions [J]. Acta Agronomica Sinica, 2022, 48(8): 1914-1925.
[14] HUAI Yuan-Yuan, ZHANG Sheng-Rui, WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin, SUN Jun-Ming. Potential evaluation of molecular markers related to major nutritional quality traits in soybean breeding [J]. Acta Agronomica Sinica, 2022, 48(8): 1957-1976.
[15] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!