JU Jian-Ye1,2,YANG Liu1,2,CHEN Hao1,2,KANG Lei1,2,XIA Shi-Tou3,LIU Zhong-Song1,2,*
[1] Coen O, Lu J, Xu W J, Pateyron S, Grain D, Péchoux C, Lepiniec L, Magnani E. A transparent testa transcriptional module regulates endothelium polarity. Front Plant Sci, 2020, 10: 1801. [2] Windsor J B, Symonds V V, Mendenhall J, Lloyd A M. Arabidopsis seed coat development: morphological differentiation of the outer integument. Plant J, 2000, 22: 483–493. [3] Ingouff M, Jullien P E, Berger F. The female gametophyte and the endosperm control cell proliferation and differentiation of the seed coat in Arabidopsis. Plant Cell, 2006, 18: 3491–3501. [4] Wang J G, Feng C, Liu H H, Ge F R, Li S, Li H J, Zhang Y. HAPLESS13-mediated trafficking of STRUBBELIG is critical for ovule development in Arabidopsis. PLoS Genet, 2016, 12: e1006269. [5] Schneitz K, Hülskamp M, Pruitt R E. Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant J, 1995, 7: 731–749. [6] Francoz E, Lepiniec L, North H M. Seed coats as an alternative molecular factory: thinking outside the box. Plant Reprod, 2018, 31: 327–342. [7] Figueiredo D D, Köhler C. Signalling events regulating seed coat development. Biochem Soc Trans, 2014, 42: 358–363. [8] Robinson-Beers K, Pruitt R E, Gasser C S. Ovule development in wild-type Arabidopsis and two female-sterile mutants. Plant Cell, 1992, 4: 1237–1249. [9] Pankaj R, Lima R B, Figueiredo D D. Hormonal regulation and crosstalk during early endosperm and seed coat development. Plant Reprod, 2024, 38: 5. [10] Khan D, Chan A, Millar J L, Girard I J, Belmonte M F. Predicting transcriptional circuitry underlying seed coat development. Plant Sci, 2014, 223: 146–152. [11] Beeckman T, De Rycke R, Viane R, Inzé D. Histological study of seed coat development in Arabidopsis thaliana. J Plant Res, 2000, 113: 139–148. [12] Western T L, Skinner D J, Haughn G W. Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiol, 2000, 122: 345–356. [13] Xu Y, Hu R B, Li S J. Regulation of seed coat mucilage production and modification in Arabidopsis. Plant Sci, 2023, 328: 111591. [14] Pourcel L, Routaboul J M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell, 2005, 17: 2966–2980. [15] Pourcel L, Routaboul J M, Cheynier V, Lepiniec L, Debeaujon I. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci, 2007, 12: 29–36. [16] Debeaujon I, Nesi N, Perez P, Devic M, Grandjean O, Caboche M, Lepiniec L. Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell, 2003, 15: 2514–2531. [17] Khan D, Millar J L, Girard I J, Belmonte M F. Transcriptional circuitry underlying seed coat development in Arabidopsis. Plant Sci, 2014, 219/220: 51–60. [18] Haughn G, Chaudhury A. Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci, 2005, 10: 472–477. [19] Wu L M, El-Mezawy A, Shah S. A seed coat outer integument-specific promoter for Brassica napus. Plant Cell Rep, 2011, 30: 75–80. [20] Nesi N, Lucas M O, Auger B, Baron C, Lécureuil A, Guerche P, Kronenberger J, Lepiniec L, Debeaujon I, Renard M. The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidin-accumulating cells of the Brassica napus seed coat. Plant Cell Rep, 2009, 28: 601–617. [21] Xu W J, Grain D, Bobet S, Le Gourrierec J, Thévenin J, Kelemen Z, Lepiniec L, Dubos C. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed. New Phytol, 2014, 202: 132–144. [22] Xu W J, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci, 2015, 20: 176–185. [23] Lepiniec L, Debeaujon I, Routaboul J M, Baudry A, Pourcel L, Nesi N, Caboche M. Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol, 2006, 57: 405–430. [24] Appelhagen I, Thiedig K, Nordholt N, Schmidt N, Huep G, Sagasser M, Weisshaar B. Update on transparent testa mutants from Arabidopsis thaliana: characterisation of new alleles from an isogenic collection. Planta, 2014, 240: 955–970. [25] Mizzotti C, Ezquer I, Paolo D, Rueda-Romero P, Guerra R F, Battaglia R, Rogachev I, Aharoni A, Kater M M, Caporali E, et al. SEEDSTICK is a master regulator of development and metabolism in the Arabidopsis seed coat. PLoS Genet, 2014, 10: e1004856. [26] Golz J F, Allen P J, Li S F, Parish R W, Jayawardana N U, Bacic A, Doblin M S. Layers of regulation: insights into the role of transcription factors controlling mucilage production in the Arabidopsis seed coat. Plant Sci, 2018, 272: 179–192. [27] Belmonte M F, Kirkbride R C, Stone S L, Pelletier J M, Bui A Q, Yeung E C, Hashimoto M, Fei J, Harada C M, Munoz M D, et al. Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc Natl Acad Sci USA, 2013, 110: E435–E444. [28] Wang K M, Zhao C Y, Xiang S H, Duan K Y, Chen X L, Guo X, Sahu S K. An optimized FACS-free single-nucleus RNA sequencing (snRNA-seq) method for plant science research. Plant Sci, 2023, 326: 111535. [29] Long Y P, Liu Z J, Jia J B, Mo W P, Fang L, Lu D D, Liu B, Zhang H, Chen W, Zhai J X. FlsnRNA-seq: protoplasting-free full-length single-nucleus RNA profiling in plants. Genome Biol, 2021, 22: 66. [30] 刘忠松, 官春云, 严明理, 刘显军, 陆赢. 油菜黄籽形成的分子机制研究. 作物研究, 2015, 29: 694–701. Liu Z S, Guan C Y, Yan M L, Liu X J, Lu Y. Study on the molecular mechanism of rape yellow seed formation. Crop Res, 2015, 29: 694–701 (in Chinese). [31] 余波. 我国高油油菜产业化获重要突破含油量高达49%以上的品种中双11号通过国家审定. 中国油料作物学报, 2008, 30: 386. Yu B. A significant breakthrough in industrialization of high-oil rapeseed in China: the cultivar Zhongshuang No. 11 with oil content exceeding 49% passed national certification. Chin J Oil Crop Sci, 2008, 30: 386 (in Chinese). [32] 陆赢, 刘忠松. 油菜原花色素形成与种皮颜色的关系. 作物研究, 2009, 23: 328–331. Lu Y, Liu Z S. Relationship between proanthocyanidin formation and seed coat color in rapeseed. Crop Res, 2009, 23: 328–331 (in Chinese). [33] Holtgrewe M, Messerschmidt C, Nieminen M, Beule D. DigestiFlow: from BCL to FASTQ with ease. Bioinformatics, 2020, 36: 1983–1985. [34] Pan L, Dinh H Q, Pawitan Y, Vu T N. Isoform-level quantification for single-cell RNA sequencing. Bioinformatics, 2022, 38: 1287–1294. [35] Satija R, Farrell J A, Gennert D, Schier A F, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol, 2015, 33: 495–502. [36] Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y, Brenner M, Loh P R, Raychaudhuri S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods, 2019, 16: 1289–1296. [37] McGinnis C S, Murrow L M, Gartner Z J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst, 2019, 8: 329–337. [38] Picard C L, Povilus R A, Williams B P, Gehring M. Transcriptional and imprinting complexity in Arabidopsis seeds at single-nucleus resolution. Nat Plants, 2021, 7: 730–738. [39] Ziegler D J, Khan D, Kalichuk J L, Becker M G, Belmonte M F. Transcriptome landscape of the early Brassica napus seed. J Integr Plant Biol, 2019, 61: 639–650. [40] Ma L, Meng Y Y, An Y L, Han P Y, Zhang C, Yue Y Q, Wen C L, Shi X E, Jin J J, Yang G S, et al. Single-cell RNA-seq reveals novel interaction between muscle satellite cells and fibro-adipogenic progenitors mediated with FGF7 signalling. J Cachexia Sarcopenia Muscle, 2024, 15: 1388–1403. [41] Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics, 2013, 14: 7. [42] Qiu X J, Mao Q, Tang Y, Wang L, Chawla R, Pliner H A, Trapnell C. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods, 2017, 14: 979–982. [43] Bergen V, Lange M, Peidli S, Wolf F A, Theis F J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol, 2020, 38: 1408–1414. [44] Morabito S, Reese F, Rahimzadeh N, Miyoshi E, Swarup V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep Meth, 2023, 3: 100498. [45] Xu C Q, Ma D N, Ding Q S, Zhou Y, Zheng H L. PlantPhoneDB: a manually curated pan-plant database of ligand-receptor pairs infers cell-cell communication. Plant Biotechnol J, 2022, 20: 2123–2134. [46] Liu F Y, Chen H, Yang L, You L, Ju J Y, Yang S J, Wang X L, Liu Z S. QTL mapping and transcriptome analysis reveal candidate genes regulating seed color in Brassica napus. Int J Mol Sci, 2023, 24: 9262. [47] Ye J, Wu X W, Li X, Zhang Y T, Li Y Q, Zhang H, Chen J, Xiang Y Y, Xia Y F, Zhao H, et al. Manipulation of seed coat content for increasing oil content via modulating BnaMYB52 in Brassica napus. Cell Rep, 2025, 44: 115280. [48] Qian L W, Yang L, Liu X J, Wang T Y, Kang L, Chen H, Lu Y, Zhang Y K, Yang S J, You L, et al. Natural variations in TT8 and its neighboring STK confer yellow seed with elevated oil content in Brassica juncea. Proc Natl Acad Sci USA, 2025, 122: e2417264122. [49] 夏琦, 郭滢, 王坤美, 王思忆, 巨建业, 彭雅雯, 刘忠松, 夏石头. 甘蓝型油菜种子和种皮中水杨酸含量与原花色素积累的关系研究. 作物学报, 2025, 51: 1189–1197. Xia Q, Guo Y, Wang K M, Wang S Y, Ju J Y, Peng Y W, Liu Z S, Xia S T. Correlation between salicylic acid and anthocyanins accumulation in seeds of different varieties in Brassica napus. Acta Agron Sin, 2025, 51: 1189–1197 (in Chinese with English abstract). [50] Liew L C, You Y, Auroux L, Oliva M, Peirats-Llobet M, Ng S, Tamiru-Oli M, Berkowitz O, Hong U V T, Haslem A, et al. Establishment of single-cell transcriptional states during seed germination. Nat Plants, 2024, 10: 1418–1434. [51] Wu L M, EL-mezawy A, Duong M, Shah S. Two seed coat-specific promoters are functionally conserved between Arabidopsis thaliana and Brassica napus. Vitro Cell Dev Biol Plant, 2010, 46: 338–347. [52] Nakaune S, Yamada K, Kondo M, Kato T, Tabata S, Nishimura M, Hara-Nishimura I. A vacuolar processing enzyme, deltaVPE, is involved in seed coat formation at the early stage of seed development. Plant Cell, 2005, 17: 876–887. [53] Ding Y R, Yu S Z, Wang J, Li M T, Qu C M, Li J N, Liu L Z. Comparative transcriptomic analysis of seed coats with high and low lignin contents reveals lignin and flavonoid biosynthesis in Brassica napus. BMC Plant Biol, 2021, 21: 246. [54] Paolo D, Orozco-Arroyo G, Rotasperti L, Masiero S, Colombo L, de Folter S, Ambrose B A, Caporali E, Ezquer I, Mizzotti C. Genetic interaction of SEEDSTICK, GORDITA and AUXIN RESPONSE FACTOR 2 during seed development. Genes, 2021, 12: 1189. [55] Paolo D, Rotasperti L, Schnittger A, Masiero S, Colombo L, Mizzotti C. The Arabidopsis MADS-domain transcription factor SEEDSTICK controls seed size via direct activation of E2Fa. Plants, 2021, 10: 192. [56] Ezquer I, Mizzotti C, Nguema-Ona E, Gotté M, Beauzamy L, Viana V E, Dubrulle N, Costa de Oliveira A, Caporali E, Koroney A S, et al. The developmental regulator SEEDSTICK controls structural and mechanical properties of the Arabidopsis seed coat. Plant Cell, 2016, 28: 2478–2492. [57] Zhai Y G, Yu K D, Cai S L, Hu L M, Amoo O, Xu L, Yang Y, Ma B Y, Jiao Y M, Zhang C F, et al. Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L. Plant Biotechnol J, 2020, 18: 1153–1168. [58] Sun Y, Li H, Huang J R. Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Mol Plant, 2012, 5: 387–400. [59] Li H L, Yu K D, Zhang Z L, Yu Y L, Wan J K, He H Z, Fan C C. Targeted mutagenesis of flavonoid biosynthesis pathway genes reveals functional divergence in seed coat colour, oil content and fatty acid composition in Brassica napus L. Plant Biotechnol J, 2024, 22: 445–459. [60] Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul J M, Debeaujon I, Klein M. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell, 2007, 19: 2023–2038. [61] Ichino T, Fuji K, Ueda H, Takahashi H, Koumoto Y, Takagi J, Tamura K, Sasaki R, Aoki K, Shimada T, et al. GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana. Plant J, 2014, 80: 410–423. |
[1] | XIA Qi, GUO Ying, WANG Kun-Mei, WANG Si-Yi, JU Jian-Ye, PENG Ya-Wen, LIU Zhong-Song, XIA Shi-Tou. Correlation between salicylic acid and anthocyanins accumulation in seeds of different varieties in Brassica napus [J]. Acta Agronomica Sinica, 2025, 51(5): 1189-1197. |
[2] | SHE Hui-Jie, SUN Ming-Zhu, LI Shi-Gang, WANG Dong-Xian, CHENG Tai, JIANG Bo, CHEN Ai-Wu, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of coating with fulvic acid and alginate oligosaccharide on emergence and yield of late-sown rapeseed [J]. Acta Agronomica Sinica, 2025, 51(4): 1022-1036. |
[3] | SONG Jian, XIONG Ya-Jun, CHEN Yi-Jie, XU Rui-Xin, LIU Kang-Lin, GUO Qing-Yuan, HONG Hui-Long, GAO Hua-Wei, GU Yong-Zhe, ZHANG Li-Juan, GUO Yong, YAN Zhe, LIU Zhang-Xiong, GUAN Rong-Xia, LI Ying-Hui, WANG Xiao-Bo, GUO Bing-Fu, SUN Ru-Jian, YAN Long, WANG Hao-Rang, JI Yue-Mei, CHANG Ru-Zhen, WANG Jun, QIU Li-Juan. Genetic analysis of seed coat and flower color based on a soybean nested association mapping population [J]. Acta Agronomica Sinica, 2024, 50(3): 556-575. |
[4] | MA Chao, FENG Ya-Lan, WU Shan-Wei, ZHANG Jun, GUO Bin-Bin, XIONG Ying, LI Chun-Xia, LI You-Jun. Effects of shading at grain filling stages on anthocyanin accumulation and related gene expression characteristics in seed coat of black mung bean [J]. Acta Agronomica Sinica, 2022, 48(11): 2826-2839. |
[5] | QIU Hong-Mei, CHEN Liang, HOU Yun-Long, WANG Xin-Feng, CHEN Jian, MA Xiao-Ping, CUI Zheng-Guo, ZHANG Ling, HU Jin-Hai, WANG Yue-Qiang, QIU Li-Juan. Research progress on genetic regulatory mechanism of seed color in soybean (Glycine max) [J]. Acta Agronomica Sinica, 2021, 47(12): 2299-2313. |
[6] | WANG Wen-Xiang,HU Qiong,MEI De-Sheng,LI Yun-Chang,ZHOU Ri-Jin,WANG Hui,CHENG Hong-Tao,FU Li,LIU Jia*. Genetic Effects of Branch Angle Using Mixture Model of Major Gene Plus Polygene in Brassica napus L. [J]. Acta Agron Sin, 2016, 42(08): 1103-1111. |
[7] | LU Kun,QU Cun-Min,LI Sha,ZHAO Hui-Yan,WANG Rui,XU Xin-Fu,LIANG Ying,LI Jia-Na. Expression Analysis and eQTL Mapping of BnTT3 Gene in Brassica napus L. [J]. Acta Agron Sin, 2015, 41(11): 1758-1766. |
[8] | JIAO Cong-Cong,HUANG Ji-Xiang,WANG Yi-Long,ZHANG Xiao-Yu,XIONG Hua-Xin,NI Xi-Yuan,ZHAO Jian-Yi. Genetic Analysis of Yield-Associated Traits by Unconditional and Conditional QTL in Brassica napus [J]. Acta Agron Sin, 2015, 41(10): 1481-1489. |
[9] | TANG Min-Qiang,CHENG Xiao-Hui,TONG Chao-Bo,LIU Yue-Ying,ZHAO Chuan-Ji,DONG Cai-Hua,YU Jing-Yin,MA Xiao-Gen,HUANG Jun-Yan,LIU Sheng-Yi. Genome-wide Association Analysis of Plant Height in Rapeseed (Brassica napus) [J]. Acta Agron Sin, 2015, 41(07): 1121-1126. |
[10] | ZHANG Ya-Jie,LI Jing,PENG Hong-Kun,CHEN Xiu-Bin,ZHENG Hong-Yu,CHEN Sheng-Bei,LIU An-Guo,HU Li-Yong. Dynamic Simulation Model for Growth Duration of Rapeseed (Brassica napus) [J]. Acta Agron Sin, 2015, 41(05): 766-777. |
[11] | Lü Yan-Yan,FU San-Xiong,CHEN Song,ZHANG Wei,QI Cun-Kou*. Cloning of BnADH3 Gene from Brassica napus L. and Submergence Tolerance of BnADH3 Transgenic Arabidopsis [J]. Acta Agron Sin, 2015, 41(04): 565-573. |
[12] | ZHANG Wei-Xin,CAO Hong-Xin,ZHU Yan,LIU Yan,ZHANG Wen-Yu,CHEN Yu-Li,FU Kun-Ya. Morphological Structure Model of Leaf Space Based on Biomass at Pre-Overwintering Stage in Rapeseed (Brassica napus L.) Plant [J]. Acta Agron Sin, 2015, 41(02): 318-328. |
[13] | WEN Juan,XU Jian-Feng,LONG Yan,XU Hai-Ming,MENG Jin-Ling,WU Jian-Guo,SHI Chun-Hai. QTL Mapping and Analysis Based on Embryo and Maternal Genetic Systems for Semi-Essential Amino Acid Contents in Rapeseed (Brassica napus L.) [J]. Acta Agron Sin, 2015, 41(01): 57-65. |
[14] | JIN Yan,Lü Yan-Yan,FU San-Xiong,QI Cun-Kou. Inheritance of Major Gene Plus Polygene of Water-logging Tolerance in Brassica napus L. [J]. Acta Agron Sin, 2014, 40(11): 1964-1972. |
[15] | QU Cun-Min,LU Kun,LIU Shui-Yan,BU Hai-Dong,FU Fu-You,WANG Rui,XU Xin-Fu,LI Jia-Na. SNP Detection and Analysis of Genes for Flavonoid Pathway in Yellow- and Black-Seeded Brassica napus L. [J]. Acta Agron Sin, 2014, 40(11): 1914-1924. |
|