Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Single-nucleus transcriptome analysis reveals the cellular differentiation trajectories and molecular mechanisms underlying yellow seed coat formation in rapeseed

JU Jian-Ye1,2,YANG Liu1,2,CHEN Hao1,2,KANG Lei1,2,XIA Shi-Tou3,LIU Zhong-Song1,2,*   

  1. 1 College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China; 2 Yuelu Mountain Laboratory, Changsha 410128, Hunan, China; 3 Hunan Agricultural University / Hunan Provincial Key Laboratory of Phytohormones, Changsha 410128, Hunan, China
  • Received:2025-05-07 Revised:2025-08-13 Accepted:2025-08-13 Published:2025-08-26
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (U20A2029) and the Science and Technology Innovation Program of Hunan Province (2022RC1144).

Abstract:

The seed coat of angiosperms consists of multiple layers of cells with distinct structures and functions. However, the specific gene expression profiles within each layer and their spatial-temporal patterns remain incompletely characterized, and the differentiation pathways leading to these functionally specialized layers are not yet fully understood. Compared to black-seeded rapeseed, yellow-seeded varieties exhibit a thinner seed coat, reduced pigmentation, and lower lignin content. The exact cell layers responsible for these phenotypic differences, however, have not been clearly identified. In this study, we used the yellow-seeded rapeseed variety “Huangaizao” and the black-seeded variety “Zhongshuang 11” as experimental materials. Seed coats were collected at 25 days after flowering and subjected to single-nucleus RNA sequencing to construct a high-resolution single-cell transcriptional atlas. By integrating pseudotime trajectory analysis, differential gene expression profiling, weighted gene co-expression network analysis (WGCNA), and PlantPhoneDB-based cell–cell communication analysis, we investigated the regulatory networks and intercellular signaling mechanisms involved in seed coat development and seed color differentiation. Our results revealed that the yellow-seeded rapeseed seed coat comprises seven distinct cell subpopulations. The STK gene orchestrates the ordered differentiation of distal and proximal seed coat layers, giving rise to the outer layers OI3, OI2, and OI1, as well as the inner layers II1 and II2. Compared to black-seeded rapeseed, genes involved in flavonoid biosynthesis (in II1), lignin and flavonol synthesis (in OI1), and mucilage synthesis (in OI3) were significantly downregulated in yellow-seeded rapeseed. In contrast, genes related to nucleotide and amino acid metabolism (in II2), as well as starch biosynthesis (in OI2 and OI3), were significantly upregulated. Within the II1 layer, the transcription factor TT8, together with the enzyme-coding genes TT3 and TT18, and the transporter gene TT12, were co-expressed to regulate proanthocyanidin (PA) biosynthesis. Concurrently, TT19 catalyzed the conjugation of PA with glutathione (GSH), enhancing its water solubility, while TT10 mediated the oxidative polymerization of PA monomers. Finally, the modified PAs were transported by TT12 and TT9. To our knowledge, this study represents the first single-cell transcriptomic analysis of plant seed coats. It unveils the differentiation trajectories of specific cell types in the rapeseed seed coat and elucidates the spatial and temporal dynamics of PA, lignin, and starch accumulation at single-cell resolution. These findings offer novel insights into the molecular mechanisms underlying yellow seed formation from a single-cell perspective.

Key words: Brassica napus L., single-nucleus transcriptome, seed coat, seed color, flavonoid metabolism

[1] Coen O, Lu J, Xu W J, Pateyron S, Grain D, Péchoux C, Lepiniec L, Magnani E. A transparent testa transcriptional module regulates endothelium polarity. Front Plant Sci, 2020, 10: 1801.

[2] Windsor J B, Symonds V V, Mendenhall J, Lloyd A M. Arabidopsis seed coat development: morphological differentiation of the outer integument. Plant J, 2000, 22: 483–493.

[3] Ingouff M, Jullien P E, Berger F. The female gametophyte and the endosperm control cell proliferation and differentiation of the seed coat in Arabidopsis. Plant Cell, 2006, 18: 3491–3501.

[4] Wang J G, Feng C, Liu H H, Ge F R, Li S, Li H J, Zhang Y. HAPLESS13-mediated trafficking of STRUBBELIG is critical for ovule development in Arabidopsis. PLoS Genet, 2016, 12: e1006269.

[5] Schneitz K, Hülskamp M, Pruitt R E. Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant J, 1995, 7: 731–749.

[6] Francoz E, Lepiniec L, North H M. Seed coats as an alternative molecular factory: thinking outside the box. Plant Reprod, 2018, 31: 327–342.

[7] Figueiredo D D, Köhler C. Signalling events regulating seed coat development. Biochem Soc Trans, 2014, 42: 358–363.

[8] Robinson-Beers K, Pruitt R E, Gasser C S. Ovule development in wild-type Arabidopsis and two female-sterile mutants. Plant Cell, 1992, 4: 1237–1249.

[9] Pankaj R, Lima R B, Figueiredo D D. Hormonal regulation and crosstalk during early endosperm and seed coat development. Plant Reprod, 2024, 38: 5.

[10] Khan D, Chan A, Millar J L, Girard I J, Belmonte M F. Predicting transcriptional circuitry underlying seed coat development. Plant Sci, 2014, 223: 146–152.

[11] Beeckman T, De Rycke R, Viane R, Inzé D. Histological study of seed coat development in Arabidopsis thaliana. J Plant Res, 2000, 113: 139–148.

[12] Western T L, Skinner D J, Haughn G W. Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiol, 2000, 122: 345–356.

[13] Xu Y, Hu R B, Li S J. Regulation of seed coat mucilage production and modification in Arabidopsis. Plant Sci, 2023, 328: 111591.

[14] Pourcel L, Routaboul J M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell, 2005, 17: 2966–2980.

[15] Pourcel L, Routaboul J M, Cheynier V, Lepiniec L, Debeaujon I. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci, 2007, 12: 29–36.

[16] Debeaujon I, Nesi N, Perez P, Devic M, Grandjean O, Caboche M, Lepiniec L. Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell, 2003, 15: 2514–2531.

[17] Khan D, Millar J L, Girard I J, Belmonte M F. Transcriptional circuitry underlying seed coat development in Arabidopsis. Plant Sci, 2014, 219/220: 51–60.

[18] Haughn G, Chaudhury A. Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci, 2005, 10: 472–477.

[19] Wu L M, El-Mezawy A, Shah S. A seed coat outer integument-specific promoter for Brassica napus. Plant Cell Rep, 2011, 30: 75–80.

[20] Nesi N, Lucas M O, Auger B, Baron C, Lécureuil A, Guerche P, Kronenberger J, Lepiniec L, Debeaujon I, Renard M. The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidin-accumulating cells of the Brassica napus seed coat. Plant Cell Rep, 2009, 28: 601–617.

[21] Xu W J, Grain D, Bobet S, Le Gourrierec J, Thévenin J, Kelemen Z, Lepiniec L, Dubos C. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed. New Phytol, 2014, 202: 132–144.

[22] Xu W J, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci, 2015, 20: 176–185.

[23] Lepiniec L, Debeaujon I, Routaboul J M, Baudry A, Pourcel L, Nesi N, Caboche M. Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol, 2006, 57: 405–430.

[24] Appelhagen I, Thiedig K, Nordholt N, Schmidt N, Huep G, Sagasser M, Weisshaar B. Update on transparent testa mutants from Arabidopsis thaliana: characterisation of new alleles from an isogenic collection. Planta, 2014, 240: 955–970.

[25] Mizzotti C, Ezquer I, Paolo D, Rueda-Romero P, Guerra R F, Battaglia R, Rogachev I, Aharoni A, Kater M M, Caporali E, et al. SEEDSTICK is a master regulator of development and metabolism in the Arabidopsis seed coat. PLoS Genet, 2014, 10: e1004856.

[26] Golz J F, Allen P J, Li S F, Parish R W, Jayawardana N U, Bacic A, Doblin M S. Layers of regulation: insights into the role of transcription factors controlling mucilage production in the Arabidopsis seed coat. Plant Sci, 2018, 272: 179–192.

[27] Belmonte M F, Kirkbride R C, Stone S L, Pelletier J M, Bui A Q, Yeung E C, Hashimoto M, Fei J, Harada C M, Munoz M D, et al. Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc Natl Acad Sci USA, 2013, 110: E435–E444.

[28] Wang K M, Zhao C Y, Xiang S H, Duan K Y, Chen X L, Guo X, Sahu S K. An optimized FACS-free single-nucleus RNA sequencing (snRNA-seq) method for plant science research. Plant Sci, 2023, 326: 111535.

[29] Long Y P, Liu Z J, Jia J B, Mo W P, Fang L, Lu D D, Liu B, Zhang H, Chen W, Zhai J X. FlsnRNA-seq: protoplasting-free full-length single-nucleus RNA profiling in plants. Genome Biol, 2021, 22: 66.

[30] 刘忠松, 官春云, 严明理, 刘显军, 陆赢. 油菜黄籽形成的分子机制研究. 作物研究, 2015, 29: 694–701.

Liu Z S, Guan C Y, Yan M L, Liu X J, Lu Y. Study on the molecular mechanism of rape yellow seed formation. Crop Res, 2015, 29: 694–701 (in Chinese).

[31] 余波. 我国高油油菜产业化获重要突破含油量高达49%以上的品种中双11号通过国家审定. 中国油料作物学报, 2008, 30: 386.

Yu B. A significant breakthrough in industrialization of high-oil rapeseed in China: the cultivar Zhongshuang No. 11 with oil content exceeding 49% passed national certification. Chin J Oil Crop Sci, 2008, 30: 386 (in Chinese).

[32] 陆赢, 刘忠松. 油菜原花色素形成与种皮颜色的关系. 作物研究, 2009, 23: 328–331.

Lu Y, Liu Z S. Relationship between proanthocyanidin formation and seed coat color in rapeseed. Crop Res, 2009, 23: 328–331 (in Chinese).

[33] Holtgrewe M, Messerschmidt C, Nieminen M, Beule D. DigestiFlow: from BCL to FASTQ with ease. Bioinformatics, 2020, 36: 1983–1985.

[34] Pan L, Dinh H Q, Pawitan Y, Vu T N. Isoform-level quantification for single-cell RNA sequencing. Bioinformatics, 2022, 38: 1287–1294.

[35] Satija R, Farrell J A, Gennert D, Schier A F, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol, 2015, 33: 495–502.

[36] Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y, Brenner M, Loh P R, Raychaudhuri S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods, 2019, 16: 1289–1296.

[37] McGinnis C S, Murrow L M, Gartner Z J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst, 2019, 8: 329–337.

[38] Picard C L, Povilus R A, Williams B P, Gehring M. Transcriptional and imprinting complexity in Arabidopsis seeds at single-nucleus resolution. Nat Plants, 2021, 7: 730–738.

[39] Ziegler D J, Khan D, Kalichuk J L, Becker M G, Belmonte M F. Transcriptome landscape of the early Brassica napus seed. J Integr Plant Biol, 2019, 61: 639–650.

[40] Ma L, Meng Y Y, An Y L, Han P Y, Zhang C, Yue Y Q, Wen C L, Shi X E, Jin J J, Yang G S, et al. Single-cell RNA-seq reveals novel interaction between muscle satellite cells and fibro-adipogenic progenitors mediated with FGF7 signalling. J Cachexia Sarcopenia Muscle, 2024, 15: 1388–1403.

[41] Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics, 2013, 14: 7.

[42] Qiu X J, Mao Q, Tang Y, Wang L, Chawla R, Pliner H A, Trapnell C. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods, 2017, 14: 979–982.

[43] Bergen V, Lange M, Peidli S, Wolf F A, Theis F J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol, 2020, 38: 1408–1414.

[44] Morabito S, Reese F, Rahimzadeh N, Miyoshi E, Swarup V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep Meth, 2023, 3: 100498.

[45] Xu C Q, Ma D N, Ding Q S, Zhou Y, Zheng H L. PlantPhoneDB: a manually curated pan-plant database of ligand-receptor pairs infers cell-cell communication. Plant Biotechnol J, 2022, 20: 2123–2134.

[46] Liu F Y, Chen H, Yang L, You L, Ju J Y, Yang S J, Wang X L, Liu Z S. QTL mapping and transcriptome analysis reveal candidate genes regulating seed color in Brassica napus. Int J Mol Sci, 2023, 24: 9262.

[47] Ye J, Wu X W, Li X, Zhang Y T, Li Y Q, Zhang H, Chen J, Xiang Y Y, Xia Y F, Zhao H, et al. Manipulation of seed coat content for increasing oil content via modulating BnaMYB52 in Brassica napus. Cell Rep, 2025, 44: 115280.

[48] Qian L W, Yang L, Liu X J, Wang T Y, Kang L, Chen H, Lu Y, Zhang Y K, Yang S J, You L, et al. Natural variations in TT8 and its neighboring STK confer yellow seed with elevated oil content in Brassica juncea. Proc Natl Acad Sci USA, 2025, 122: e2417264122.

[49] 夏琦, 郭滢, 王坤美, 王思忆, 巨建业, 彭雅雯, 刘忠松, 夏石头. 甘蓝型油菜种子和种皮中水杨酸含量与原花色素积累的关系研究. 作物学报, 2025, 51: 1189–1197.

Xia Q, Guo Y, Wang K M, Wang S Y, Ju J Y, Peng Y W, Liu Z S, Xia S T. Correlation between salicylic acid and anthocyanins accumulation in seeds of different varieties in Brassica napus. Acta Agron Sin, 2025, 51: 1189–1197 (in Chinese with English abstract).

[50] Liew L C, You Y, Auroux L, Oliva M, Peirats-Llobet M, Ng S, Tamiru-Oli M, Berkowitz O, Hong U V T, Haslem A, et al. Establishment of single-cell transcriptional states during seed germination. Nat Plants, 2024, 10: 1418–1434.

[51] Wu L M, EL-mezawy A, Duong M, Shah S. Two seed coat-specific promoters are functionally conserved between Arabidopsis thaliana and Brassica napus. Vitro Cell Dev Biol Plant, 2010, 46: 338–347.

[52] Nakaune S, Yamada K, Kondo M, Kato T, Tabata S, Nishimura M, Hara-Nishimura I. A vacuolar processing enzyme, deltaVPE, is involved in seed coat formation at the early stage of seed development. Plant Cell, 2005, 17: 876–887.

[53] Ding Y R, Yu S Z, Wang J, Li M T, Qu C M, Li J N, Liu L Z. Comparative transcriptomic analysis of seed coats with high and low lignin contents reveals lignin and flavonoid biosynthesis in Brassica napus. BMC Plant Biol, 2021, 21: 246.

[54] Paolo D, Orozco-Arroyo G, Rotasperti L, Masiero S, Colombo L, de Folter S, Ambrose B A, Caporali E, Ezquer I, Mizzotti C. Genetic interaction of SEEDSTICK, GORDITA and AUXIN RESPONSE FACTOR 2 during seed development. Genes, 2021, 12: 1189.

[55] Paolo D, Rotasperti L, Schnittger A, Masiero S, Colombo L, Mizzotti C. The Arabidopsis MADS-domain transcription factor SEEDSTICK controls seed size via direct activation of E2Fa. Plants, 2021, 10: 192.

[56] Ezquer I, Mizzotti C, Nguema-Ona E, Gotté M, Beauzamy L, Viana V E, Dubrulle N, Costa de Oliveira A, Caporali E, Koroney A S, et al. The developmental regulator SEEDSTICK controls structural and mechanical properties of the Arabidopsis seed coat. Plant Cell, 2016, 28: 2478–2492.

[57] Zhai Y G, Yu K D, Cai S L, Hu L M, Amoo O, Xu L, Yang Y, Ma B Y, Jiao Y M, Zhang C F, et al. Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L. Plant Biotechnol J, 2020, 18: 1153–1168.

[58] Sun Y, Li H, Huang J R. Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Mol Plant, 2012, 5: 387–400.

[59] Li H L, Yu K D, Zhang Z L, Yu Y L, Wan J K, He H Z, Fan C C. Targeted mutagenesis of flavonoid biosynthesis pathway genes reveals functional divergence in seed coat colour, oil content and fatty acid composition in Brassica napus L. Plant Biotechnol J, 2024, 22: 445–459.

[60] Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul J M, Debeaujon I, Klein M. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell, 2007, 19: 2023–2038.

[61] Ichino T, Fuji K, Ueda H, Takahashi H, Koumoto Y, Takagi J, Tamura K, Sasaki R, Aoki K, Shimada T, et al. GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in Arabidopsis thaliana. Plant J, 2014, 80: 410–423.

[1] XIA Qi, GUO Ying, WANG Kun-Mei, WANG Si-Yi, JU Jian-Ye, PENG Ya-Wen, LIU Zhong-Song, XIA Shi-Tou. Correlation between salicylic acid and anthocyanins accumulation in seeds of different varieties in Brassica napus [J]. Acta Agronomica Sinica, 2025, 51(5): 1189-1197.
[2] SHE Hui-Jie, SUN Ming-Zhu, LI Shi-Gang, WANG Dong-Xian, CHENG Tai, JIANG Bo, CHEN Ai-Wu, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of coating with fulvic acid and alginate oligosaccharide on emergence and yield of late-sown rapeseed [J]. Acta Agronomica Sinica, 2025, 51(4): 1022-1036.
[3] SONG Jian, XIONG Ya-Jun, CHEN Yi-Jie, XU Rui-Xin, LIU Kang-Lin, GUO Qing-Yuan, HONG Hui-Long, GAO Hua-Wei, GU Yong-Zhe, ZHANG Li-Juan, GUO Yong, YAN Zhe, LIU Zhang-Xiong, GUAN Rong-Xia, LI Ying-Hui, WANG Xiao-Bo, GUO Bing-Fu, SUN Ru-Jian, YAN Long, WANG Hao-Rang, JI Yue-Mei, CHANG Ru-Zhen, WANG Jun, QIU Li-Juan. Genetic analysis of seed coat and flower color based on a soybean nested association mapping population [J]. Acta Agronomica Sinica, 2024, 50(3): 556-575.
[4] MA Chao, FENG Ya-Lan, WU Shan-Wei, ZHANG Jun, GUO Bin-Bin, XIONG Ying, LI Chun-Xia, LI You-Jun. Effects of shading at grain filling stages on anthocyanin accumulation and related gene expression characteristics in seed coat of black mung bean [J]. Acta Agronomica Sinica, 2022, 48(11): 2826-2839.
[5] QIU Hong-Mei, CHEN Liang, HOU Yun-Long, WANG Xin-Feng, CHEN Jian, MA Xiao-Ping, CUI Zheng-Guo, ZHANG Ling, HU Jin-Hai, WANG Yue-Qiang, QIU Li-Juan. Research progress on genetic regulatory mechanism of seed color in soybean (Glycine max) [J]. Acta Agronomica Sinica, 2021, 47(12): 2299-2313.
[6] WANG Wen-Xiang,HU Qiong,MEI De-Sheng,LI Yun-Chang,ZHOU Ri-Jin,WANG Hui,CHENG Hong-Tao,FU Li,LIU Jia*. Genetic Effects of Branch Angle Using Mixture Model of Major Gene Plus Polygene in Brassica napus L. [J]. Acta Agron Sin, 2016, 42(08): 1103-1111.
[7] LU Kun,QU Cun-Min,LI Sha,ZHAO Hui-Yan,WANG Rui,XU Xin-Fu,LIANG Ying,LI Jia-Na. Expression Analysis and eQTL Mapping of BnTT3 Gene in Brassica napus L. [J]. Acta Agron Sin, 2015, 41(11): 1758-1766.
[8] JIAO Cong-Cong,HUANG Ji-Xiang,WANG Yi-Long,ZHANG Xiao-Yu,XIONG Hua-Xin,NI Xi-Yuan,ZHAO Jian-Yi. Genetic Analysis of Yield-Associated Traits by Unconditional and Conditional QTL in Brassica napus [J]. Acta Agron Sin, 2015, 41(10): 1481-1489.
[9] TANG Min-Qiang,CHENG Xiao-Hui,TONG Chao-Bo,LIU Yue-Ying,ZHAO Chuan-Ji,DONG Cai-Hua,YU Jing-Yin,MA Xiao-Gen,HUANG Jun-Yan,LIU Sheng-Yi. Genome-wide Association Analysis of Plant Height in Rapeseed (Brassica napus) [J]. Acta Agron Sin, 2015, 41(07): 1121-1126.
[10] ZHANG Ya-Jie,LI Jing,PENG Hong-Kun,CHEN Xiu-Bin,ZHENG Hong-Yu,CHEN Sheng-Bei,LIU An-Guo,HU Li-Yong. Dynamic Simulation Model for Growth Duration of Rapeseed (Brassica napus) [J]. Acta Agron Sin, 2015, 41(05): 766-777.
[11] Lü Yan-Yan,FU San-Xiong,CHEN Song,ZHANG Wei,QI Cun-Kou*. Cloning of BnADH3 Gene from Brassica napus L. and Submergence Tolerance of BnADH3 Transgenic Arabidopsis [J]. Acta Agron Sin, 2015, 41(04): 565-573.
[12] ZHANG Wei-Xin,CAO Hong-Xin,ZHU Yan,LIU Yan,ZHANG Wen-Yu,CHEN Yu-Li,FU Kun-Ya. Morphological Structure Model of Leaf Space Based on Biomass at Pre-Overwintering Stage in Rapeseed (Brassica napus L.) Plant [J]. Acta Agron Sin, 2015, 41(02): 318-328.
[13] WEN Juan,XU Jian-Feng,LONG Yan,XU Hai-Ming,MENG Jin-Ling,WU Jian-Guo,SHI Chun-Hai. QTL Mapping and Analysis Based on Embryo and Maternal Genetic Systems for Semi-Essential Amino Acid Contents in Rapeseed (Brassica napus L.) [J]. Acta Agron Sin, 2015, 41(01): 57-65.
[14] JIN Yan,Lü Yan-Yan,FU San-Xiong,QI Cun-Kou. Inheritance of Major Gene Plus Polygene of Water-logging Tolerance in Brassica napus L. [J]. Acta Agron Sin, 2014, 40(11): 1964-1972.
[15] QU Cun-Min,LU Kun,LIU Shui-Yan,BU Hai-Dong,FU Fu-You,WANG Rui,XU Xin-Fu,LI Jia-Na. SNP Detection and Analysis of Genes for Flavonoid Pathway in Yellow- and Black-Seeded Brassica napus L. [J]. Acta Agron Sin, 2014, 40(11): 1914-1924.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!