Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2006, Vol. 32 ›› Issue (06): 905-910.

• ORIGINAL PAPERS • Previous Articles     Next Articles

Acceleration of Grain Growth and Development Process by FACE during Early Grain Filling Stage of Rice (Oryza sativa L.)

LI Jun-Ying1,XU Chang-Liang1,ZHU Jian-Guo2, CAI Qing-Sheng1   

  1. 1 College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu;2 Institute of Soil Science, Chinese Academy of Science, Nanjing 210098, Jiangsu, China
  • Received:2005-05-11 Revised:1900-01-01 Online:2006-06-12 Published:2006-06-12
  • Contact: CAI Qing-Sheng

Abstract:

It is forecasted that atmospheric CO2 concentration till the middle of this century will be risen to about 550 µmol·mol-1 . Several experiments have shown that the yield of rice will be significantly increased by elevated CO2 as a result of an increase in number of grain per panicle or per plant. Less attention has been paid to the effect of elevated CO2 on the process of grain growth and development. This experiment was conducted to determine the grain growth and development during early stage of grain filling of rice (Oryza sativa L. sp. japonica. cv Wuxiangjing-14) under the conditions of ambient atmosphere CO2 concentration (CK) and FACE (Free Air CO2 Enrichment, 200 µmol·mol-1 higher than ambient) with 3 repetitions. The grain width, length and their product, contents of soluble carbohydrate (reducing sugar and sucrose) and starch, and activities of invertases including cell wall invertase (CWI), soluble acid invertase(SAI)and neutral invertase (NI) in grain were measured. Dry matter and filling rate on the basis of dry weight of grain with sampling every 3 days from anthesis till mature period, and grain weight and size at maturity were tested. The results showed that the process of growth and development of grain was accelerated and width and length of caryopsis were significantly increased by FACE. The maxima of grain width and size, and grain filling rate under FACE were about 3 days earlier than those under CK. The product of mature grain width and length under FACE was increased by 4.5% of CK. However, such obvious effect was not shown in the final grain weight (Fig.1, Fig.2). The contents of reducing sugar and sucrose, which were needed as materials and energy substance for the normal growth and development of grain, were increased during 1 week after anthesis (Fig.3), while the activities of CWI and NI enhanced during 5 days after anthesis by FACE (Fig.4). However, the content of starch and activitie of SAI in grain were not affected by elevated CO2. In conclusion, higher contents of soluble carbohydrate and higher activities of CWI and NI under FACE supply more materials for the growth of larger grain sink capacity. There is no significant effect on the final grain dry weight resulting from a slight increase in sink activities and the earlier decrease in grain filling rate under FACE. A new balance between sink and source needs to be established under elevated CO2 condition in order to improve grain yield by means of increasing the grain weight on the basis of higher panicle grain number in rice.

Key words: FACE, Rice, Grain filling, Gain size, Sucrose, Invertase

CLC Number: 

  • S511
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[7] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[8] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[9] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[10] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[11] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[12] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[13] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[14] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[15] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!