Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2007, Vol. 33 ›› Issue (11): 1763-1770.

• ORIGINAL PAPERS • Previous Articles     Next Articles

Characterizing Nitrogen Form Variations in Different Organs of Two Wheat Genotypes under Three Nitrogen Rates

YANG Tie-Gang12,DAI Ting-Bo1,JIANG Dong1,JING Qi1,CAO Wei-Xing1   

  1. 1 Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Argricultural University, Nanjing 210095, Jiangsu; 2 Cotton and Oil Crop’s Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2006-11-27 Revised:1900-01-01 Online:2007-11-12 Published:2007-11-12
  • Contact: CAO Wei-Xing

Abstract:

Wheat grains obtain nitrogen continuously through decomposition and assimilation of nitrogen compounds from vegetative organs after anthesis. The ability of grains obtaining nitrogen is an important factor to improve the yield and quality of wheat. To assess the ability differences, the field experiments were conducted under different nitrogen application rates using two wheat cultivars, Yumai 47 (grain protein content 15.5%) and Yumai 50 (grain protein content 12.4%). The results showed that Grain of Yumai47 had greater ability of obtaining nitrogen from its vegetative organs than that of Yumai 50. To reveal the physiological mechanism causing the difference between the two cultivars, investigation was carried out for the dynamic changes of three nitrogen forms as assimilable nitrogen (AN), functional nitrogen (FN) and structural nitrogen (SN) in wheat plants in responses to varied nitrogen rates. The data showed that AN, FN, and SN were affected more significantly by cultivars than by nitrogen rates, especially after anthesis. AN content in stems and leaves of low grain protein genotype Yumai 50 declined continuously after anthesis, while that of high grain protein genotype Yumai 47 increased. In grains, AN content in Yumai 50 decreased slowly from 1.98–2.35 mg g–1 to 1.38–1.70 mg g–1 after flowering. However, in Yumai 47 it declined sharply from 5.51–5.70 mg g–1 to 1.15–1.38 mg g–1 at 17 days after anthesis, and then increased from 1.15–1.38 mg g–1 to 3.01–3.29 mg g–1 under different nitrogen rates at maturity. The continuous increase of AN content in the stems and leaves from jointing to filling was closely related to the demand of grain protein formation in high protein genotype Yumai 47. FN content, which participated in absorption and assimilation within leaves, was not significantly different in two different genotypes. In addition to a sharper decrease of SN content in Yumai 47 than Yumai 50 after anthesis, SN content in stems and leaves showed a similar trend over development stages. They all increased with a peak at anthesis, and then exhibited a decreasing trend. In grains, changes of SN contents in two cultivars showed a similar trend, decreasing from anthesis to maturity, although Yumai 47 had a much higher SN content (3.70%–4.28%) at anthesis than Yumai 50(1.38%–1.74%). The results suggest that the higher SN content in grains at anthesis is the key factor caused greater nitrogen gain from the vegetative organs in Yumai 47. SN synthesis determines the direction of nitrogen flow, and the decomposition of SN in leaves and stems provided the key source for nitrogen translocation into grain.

Key words: Wheat, Assimilable nitrogen, Functional nitrogen, Structural nitrogen

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[6] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[7] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[8] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[9] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[10] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[11] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[12] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[13] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[14] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[15] LUO Jiang-Tao, ZHENG Jian-Min, PU Zong-Jun, FAN Chao-Lan, LIU Deng-Cai, HAO Ming. Chromosome transmission in hybrids between tetraploid and hexaploid wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!