Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2008, Vol. 34 ›› Issue (12): 2202-2209.doi: 10.3724/SP.J.1006.2008.02202

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Modeling with Climatic Factors and Analysis on Ecological Characters for Grain Weight Dissected Factors of Two-line Hybrid Rice, Liangyoupeijiu

LÜ Chuan-Gen1,ZONG Shou-Yu1,HU Ning2,ZOU Jiang-Shi1,YAO Ke-Min2,TANG Wei-Ya2   

  1. 1 Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu; 2 Institute of Applied Meteorological Science, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
  • Received:2008-02-20 Revised:2008-06-08 Online:2008-12-12 Published:2008-09-06
  • Supported by:

    吕川根(1964-),男,江苏宜兴人,研究员,从事水稻育种与栽培研究.Tel:025-84390313

Abstract:

To understand the grain weight variation with climatic factors and exert its ecological potential of grain yield for a two-line hybrid rice Liangyoupeijiu, grain weight was carefully calculated with dissected indices of grain length, width, thickness and specific gravity. In an effort to correlate ecological factors to such indices during growing stages, a set of data from eight ecological plots in Southern China rice area in 2006 and 2007 were used to establish ecological model. Equations with climatic and biological factors were established for grain area (S), thickness (H) and specific gravity (ρ). Correlation analysis showed that growing stages strongly affected S from glumes differentiation (stage III–IV) to pollen mother-cell meiosis (stage VI–VII), and the most important meteorological factor was temperature. Furthermore, daily average temperature ( ) of 27–29℃, daily maximum temperature (Tmax) of 34℃,and daily minimum temperature (Tmin) of 24℃ were favorable to growth in grain length and thickness. Thickness showed quadratic relation with Tmax and linear negative relation with at 1–30 d after heading. Specific gravity positively correlated with sunshine hours (SH) during 1–10 d after heading, and negatively correlated with Tmax during 1–30 d after heading, and 8 h of SH, Tmax<30℃ were favorable to the development of ρ. By modeling with climate data of 95 cities which was grouped into seven rice cropping areas in Southern China during 1951–2002, the mean 1000-grain weight of Liangyoupeijiu was 25.93–28.01 g, which mainly varied with the latitude. However, grain weight in Hunan, Jiangxi and Guangdong Provinces was presented a certain extent of varying trend with longitude because of the tremendous difference of altitude. 1 000-grain weight of late season rice was 1.39 g larger than that of early season rice. The key factors affecting the ecological and seasonal characters of grain weight were temperature during panicle differentiation, subsequently, the temperature and sunshine hours during grain filling period.

Key words: Liangyoupeijiu, Grain weight, Climatic factor, Model, Ecology

[1] WANG Jing-Tian, ZHANG Ya-Wen, DU Ying-Wen, REN Wen-Long, LI Hong-Fu, SUN Wen-Xian, GE Chao, ZHANG Yuan-Ming. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits [J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424.
[2] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[3] ZHANG Jian, XIE Tian-Jin, WEI Xiao-Nan, WANG Zong-Kai, LIU Chong-Tao, ZHOU Guang-Sheng, WANG Bo. Estimation of feed rapeseed biomass based on multi-angle oblique imaging technique of unmanned aerial vehicle [J]. Acta Agronomica Sinica, 2021, 47(9): 1816-1823.
[4] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[5] HUANG Bing-Yan, SUN Zi-Qi, LIU Hua, FANG Yuan-Jin, SHI Lei, MIAO Li-Juan, ZHANG Mao-Ning, ZHANG Zhong-Xin, XU Jing, ZHANG Meng-Yuan, DONG Wen-Zhao, ZHANG Xin-You. Genetic analysis of fat content based on nested populations in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1100-1108.
[6] DONG Ming-Hui, CHEN Pei-Feng, JIANG Yi, CAO Peng-Hui, SONG Yun-Sheng, GU Jun-Rong, XIE Yu-Lin, QIAO Zhong-Ying, ZHANG Wen-Di, HUANG Li-Fen. Response of yield of different growth types of japonica rice varieties to climatic factors at different sowing dates in Taihu region of Jiangsu province [J]. Acta Agronomica Sinica, 2021, 47(5): 952-963.
[7] LEI Yong, WANG Zhi-Hui, HUAI Dong-Xin, GAO Hua-Yuan, YAN Li-Ying, LI Jian-Guo, LI Wei-Tao, CHEN Yu-Ning, KANG Yan-Ping, LIU Hai-Long, WANG Xin, XUE Xiao-Meng, JIANG Hui-Fang, LIAO Bo-Shou. Development and application of a near infrared spectroscopy model for predicting high sucrose content of peanut seed [J]. Acta Agronomica Sinica, 2021, 47(2): 332-341.
[8] ZHANG Fu-Yan, CHENG Zhong-Jie, CHEN Xiao-Jie, WANG Jia-Huan, CHEN Feng, FAN Jia-Lin, ZHANG Jian-Wei, YANG Bao-An. Molecular identification and breeding application of allelic variation of grain weight gene in wheat from the Yellow-Huai-River Valley [J]. Acta Agronomica Sinica, 2021, 47(11): 2091-2098.
[9] LI Yan-Da, CAO Zhong-Sheng, SHU Shi-Fu, SUN Bin-Feng, YE Chun, HUANG Jun-Bao, ZHU Yan, TIAN Yong-Chao. Model for monitoring leaf dry weight of double cropping rice based on crop growth monitoring and diagnosis apparatus [J]. Acta Agronomica Sinica, 2021, 47(10): 2028-2035.
[10] CUI Ying, LIN Hong-Hong, XIE Yun, LIU Su-Hong. Application study of crop yield prediction based on AquaCrop model in black soil region of Northeast China [J]. Acta Agronomica Sinica, 2021, 47(1): 159-168.
[11] LI Zong-Fei,SU Ji-Xia,FEI Cong,LI Yang-Yang,LIU Ning-Ning,DAI Yu-Xiang,ZHANG Kai-Xiang,WANG Kai-Yong,FAN Hua,CHEN Bing. Estimation of total nitrogen content in sugarbeet leaves under drip irrigation based on hyperspectral characteristic parameters and vegetation index [J]. Acta Agronomica Sinica, 2020, 46(4): 557-570.
[12] HAN Kang, YU Jing, SHI Xiao-Hua, CUI Shi-Xin, FAN Ming-Shou. Inversion of nitrogen accumulation in potato leaf with different spectral indices [J]. Acta Agronomica Sinica, 2020, 46(12): 1979-1990.
[13] WANG Xiao-Lei, LI Wei-Xing, ZENG Bo-Hong, SUN Xiao-Tang, OU-YANG Lin-Juan, CHEN Xiao-Rong, HE Hao-Hua, ZHU Chang-Lan. QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2020, 46(10): 1517-1525.
[14] LI Yao-Yao,FAN Pan-Pan,MING Bo,WANG Chun-Xia,WANG Ke-Ru,HOU Peng,XIE Rui-Zhi,LI Shao-Kun. Establishment and application of spring maize leaf longevity model based on Gaussian function [J]. Acta Agronomica Sinica, 2019, 45(8): 1221-1229.
[15] WU Ya-Peng,HE Li,WANG Yang-Yang,LIU Bei-Cheng,WANG Yong-Hua,GUO Tian-Cai,FENG Wei. Dynamic model of vegetation indices for biomass and nitrogen accumulation in winter wheat [J]. Acta Agronomica Sinica, 2019, 45(8): 1238-1249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!