Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (1): 48-56.doi: 10.3724/SP.J.1006.2009.00048
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHAO Fang-Ming,ZHANG Gui-Quan,ZENG Rui-Zhen,YANG Zeng-Lin,ZHU Hai-Tao,ZHONG Bing-Qiang,LIN Ying-Hua,HE Guang-Hua
[1]Zhang Z-Y(张志勇), Huang Y-M(黄育民), Zhang K(张凯), Wang H-C(王侯聪), Jiang L-R(江良荣). Detection of QTL for plant height in rice (Oryza sativa L.) and analysis of QTL mapping accuracy. J Xiamen Univ (Nat Sci) (厦门大学学报·自然科学版), 2008, 47(1): 116–121(in Chinese with English abstract) [2]Ye S-P(叶少平), Li J-Q(李杰勤), Zhang Q-J (张启军), Zhao B(赵兵), Li P(李平). Mapping of quantitative trait loci for plant height of rice under different environments. J Sichuan Agric Univ (四川农业大学学报), 2006, 24(1): 20–24 (in Chinese with English abstract) [3]Fan Y-Y(樊叶杨), Zhuang J-Y(庄杰云), Li Q(李强), Francisco S, Zheng K-L(郑康乐). Analysis of quantitative trait loci (QTL) for plant height and the relation between these QTL and QTL for yield traits in rice. Acta Agron Sin (作物学报), 2001, 27(6): 915–922 (in Chinese with English abstract) [4]Moncada P, Martinez C P, Borrero J, Chatel M, Gauch H, Guimaraes E P, Tohme J, McCouch S R. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet, 2001, 102: 41–52 [5]Lin H-X(林鸿宣), Zhuang J-Y(庄杰云), Qian H-R(钱惠荣), Lu J(陆军), Min S-K(闵绍楷), Xiong Z-M(熊振民), Huang N(黄宁), Zheng K-L(郑康乐). Mapping QTLs for plant height and its components by molecular markers in rice (Oraza Sativa L.). Acta Agron Sin (作物学报), 1996, 22(3): 257–263(in Chinese with English abstract) [6]Yuan A-P(袁爱平), Cao L-Y(曹立勇), Zhuang J-Y(庄杰云), Li R-Z(李润植), Zheng K-L(郑康乐), Zhu J(朱军), Cheng S-H(程式华). Analysis of additive and AE interaction effects of QTLs controlling plant height, heading date and panicle number in rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2003, 30(10): 899–906(in Chinese with English abstract) [7]Tan Z-B(谭振波), Shen L-S(沈利爽), Kuang H-C(况浩池), Lu C-F(陆朝福), Chen Y(陈英), Zhou K-D(周开达), Zhu L-H(朱立煌). Identification of QTLs for length of the top internods and other traits in rice and analysis of their genetic effects. Acta Genet Sin (遗传学报), 1996, 23(6): 439–446(in Chinese with English abstract) [8]Liu W-J(刘文俊), Wang L-Q(王令强), He Y-Q(何予卿). Comparison of quantitative trait loci controlling plant height and heading date in rice across two related populations. J Huazhong Agric Univ (华中农业大学学报), 2007, 26(2): 161–166(in Chinese with English abstract) [9]Liao C-Y, Wu P, Hu B, Yi K-K. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet, 2001, 103: 104–111 [10]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147–1162 [11]Monna L, Lin H X, Kojima S, Sasaki T, Yano M. Genetic dissection of a genomic region for a quantitative trait locus, Hd3 into two loci, Hd3a and Hd3b controlling headind date in rice. Theor Appl Genet, 2002, 104: 772–778 [12]Kubo T, Nakamura K, Yoshimura A. Development of a series of indica chromosome segment substitution lines in japonica background of rice. Rice Genet Newsl, 1999, 16: 104–106 [13]Wan J-L(万建林), Zhai H-Q(翟虎渠), Wan J-M(万建民), An J-X(安井秀), Ji C-C(吉村淳). Mapping QTL for traits associated with resistance to ferrous iron toxicity in rice (Oryza sativa L.), using japonica chromosome segment substitution lines. Acta Genet Sin (遗传学报), 2003, 30(10): 893–898(in Chinese with English abstract) [14]Zhang G Q, Zeng R Z, Zhang Z M, Ding X H, Li W T, Liu G M, He F H, Tulukdar A, Huang C F, Xi Z Y, Qin L J, Shi J Q, Zhao F M, Feng M J, Shan Z L, Chen L, Guo X Q, Zhu H T, Lu Y G. The construction of a library of single segment substitution lines in rice (Oryza sativa L.). Rice Genet Newsl, 2004, 21: 85–87 [15]He F-H(何风华), Xi Z-Y(席章营), Zeng R-Z(曾瑞珍), Zhang G-Q(张桂权). Developing single segment substitution lines (SSSLs) in rice (Oryza sativa L.) using advanced backcrosses and MAS. Acta Genet Sin (遗传学报), 2005, 32(8):825–831(in Chinese with English abstract) [16]Zeng R-Z(曾瑞珍), Shi J-Q(施军琼), Huang C-F(黄朝锋), Zhang Z-M(张泽民), Ding X-H(丁效华), Li W-T(李文涛), Zhang G-Q(张桂权). Development of a series of single segment substitution lines in Indica background of rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2006, 32(1): 88–95(in Chinese with English abstract) [17]Xi Z Y, He F H, Zeng R Z, Zhang Z M, Ding X H, Li W T, Zhang G Q. Development of a wide population of chromosome single segment substitution lines (SSSLs) in the genetic background of an elite cultivar in rice (Oryza sativa L.). Genome, 2006, 49: 476–484 [18]Liu G-M(刘冠明), Li W-T(李文涛), Zeng R-Z(曾瑞珍), Zhang G-Q(张桂权). Development of single segment substitution lines (SSSLs) of subspecies in rice. Chin J Rice Sci (中国水稻科学), 2003, 17(3): 201–204(in Chinese with English abstract) [19]He F-H(何风华), Xi Z-Y(席章营), Zeng R-Z(曾瑞珍), Tulukdar A, Zhang G-Q(张桂权). Mapping of heading date QTLs in rice (Oryza sativa L.) using single segment substitution lines. Sci Agric Sin (中国农业科学), 2005, 38(8): 1505–1513(in Chinese with English abstract) [20]He F-H(何风华), Xi Z-Y(席章营), Zeng R-Z(曾瑞珍), Tulukdar A, Zhang G-Q(张桂权). Identification of Q TL for plant height and its component s by using single segment substitution lines in rice (Oryza sativa). Chin J Rice Sci (中国水稻科学), 2005, 19(5): 387–392(in Chinese with English abstract) [21]Zeng R-Z(曾瑞珍), Tulukdar A, Liu F(刘芳), Zhang G-Q(张桂权). Mapping of the QTLs controlling grain shape in rice using single segment substitution lines. Sci Agric Sin (中国农业科学), 2006, 39(4): 647–654(in Chinese with English abstract) [22]Zhao F M, Zhu H T, Ding X H, Zeng R Z, Zhang Z M, Li W T, Zhang G Q. Detection of QTLs for stabilities using SSSLs important agronomic traits in rice. Agric Sci China, 2007, 6: 769–778 [23]Eshed Y, Zamir D. Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics, 1996, 143: 1807–1817 [24]Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epistasis and QTL × environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet, 2001, 103: 153–160 [25]Yu S B, Li J X, Xu C G, Tan Y, Li X H, Zhang Q F. Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet, 2002, 104: 619–625 [26]Zhuang J Y, Fan Y Y, Rao Z M, Wu J L, Xia Y W, Zheng K L. Analysis on additive effects and analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theor Appl Genet, 2002, 105: 1137–1145 [27]Paterson A H, Deverna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes in an interspecies cross of tomato. Genetics, 1990, 124: 735–742 [28]Gur A, Zamir D. Unused natural variation can lift yield barriers in plant breeding. PLoS Biol, 2004, 2: 1610–1615 [29]Alper K B, Ku H M, Tanksley S D. Fw2.2: a major QTL controlling fruit weight is common to both red- and green- fruited tomato species. Theor Appl Genet, 1995, 91: 994–1000 |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[3] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[4] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[5] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[6] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[7] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[8] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[9] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[10] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[11] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[12] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[13] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[14] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[15] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
|