Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (11): 2064-2072.doi: 10.3724/SP.J.1006.2009.02064
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
YU Zhen1,LI Qian1,ZHAO Jian-Ye1,JIANG Fan1,WANG Zhen-Ying1,*,PENG Yong-Kang1*,XIE Chao-Jie2,LIU Zhi-Yong2,SUN Qi-Xin2,YANG Zuo-Min2
[1] Liu J-Y(刘金元), Tao W-J(陶文静), Duan X-Y(段霞瑜), Xiang Q-J(向齐君), Liu D-J(刘大钧), Chen P-D(陈佩度). Molecular marker assisted identification of Pm genes involved in the powdery mildew resistant wheat cultivars (lines). Acta Phytopathol Sin (植物病理学报), 2000, 30(2): 133-139 (in Chinese with English abstract) [2] Liu J-Y(刘金元), Liu D-J(刘大钧). Progress of the study on wheat powdery mildew resistant genes. Acta Phytopathol Sin (植物病理学报), 2000, 30(4): 289-295 (in Chinese with English abstract) [3] Yu L, Niu J S, Ma Z Q, Chen P D, Qi L L, Liu D J. Cloning, characterization and chromosome localization of two powdery mildew resistance-related gene sequences from wheat.Acta Bot Sin, 2002, 44: 1438-1444 [4] Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J, 2004, 37: 528-538 [5] Wang Z Y, Zheng Q, Peng Y K, Xie C J, Sun Q X, Yang Z M. Identification of random amplified polymorphism DNA and simple sequence repeat markers linked to powdery mildew resistance in common wheat cultivar Brock. Plant Prod Sci, 2004, 7: 319-323 [6] Wang Z Y, Zhao P, Chen H, Peng Y K, Xie C J, Sun Q X, Yang Z M. Random amplified polymorphic DNA and sequence characterized amplified region marker linked to unknown powdery mildew resistance gene in wheat cultivar Brock. Plant Prod Sci, 2005, 8: 578-585 [7] Wang Z-Y(王振英), Zhao H-M(赵红梅), Hong J-X(洪敬欣), Chen L-Y(陈丽媛), Zhu J(朱婕), Li G(李刚), Peng Y-K(彭永康), Xie C-J(解超杰), Liu Z-Y(刘志勇), Sun Q-X(孙其信), Yang Z-M(杨作民). Identification and analysis of four novel molecular markers linked to powdery mildew resistance gene Pm21 in 6VS chromosome short arm of Haynaldia villosa. Acta Agron Sin (作物学报), 2007, 33: 605-611 (in Chinese with English abstract) [8] Zhang W-J(张维佳), Li C-Z(李纯正), Huang H-Q(黄海泉), Wang Z-Y(王振英), Peng Y-K(彭永康). Different proteins in mitochondrial proteome of T-tape maize cytoplasmic male-sterile line and its maintainer line. J Mol Cell Biol (分子细胞生物学报), 2007, 40(6): 410-418 (in Chinese with English abstract) [9] Balmer Y, Vensel W H, DuPont F M, Buchanan B B, Hurkman W J. Proteome of amyloplasts isolated from developing wheat endosperm presents evidence of broad metabolic capability. J Exp Bot, 2006, 57: 1591-1602 [10] Zhao C F, Wang J Q, Cao M L, Zhao K, Shao J M, Lei T T, Yin J N, Hill G G, Xu N Z, Liu S Q. Proteomic changes in rice leaves during development of field-grown rice plants. Proteomics, 2005, 5: 961-972 [11] Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J. A proteomic analysis of cold stress responses in rice seedlings. Proteomics, 2005, 5: 3162-3172 [12] Yan S P, Tang Z C, Su W A, Sun W N. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics, 2005, 5: 235-244 [13] Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Bennett J. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2002, 2: 1131-1145 [14] Frédérique R, Pascale G, Dominique V, Michel Z. Protein changes in response to progressive water deficit in maize. Plant Physiol, 1998, 117: 1253-1263 [15] Taylor N L, Heazlewood J L, Day D A, Millar A H. Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics, 2005, 4: 1122-1133 [16] Antonio J C, Christine C, Nathalie Z, Christian M, Emmanuelle L, Alain V D, Christophe C. Proteomic analysis of grapevine (Vitis vinifera L.) tissues subjected to herbicide stress. J Exp Bot, 2005, 56: 2783-2795 [17] Sun T Kim, Sang G K, Du H H, Sun Y K, Han J K, Byung H L, Jeung J L, Kyu Y K. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus Magnaporthe grisea.Proteomics, 2004, 4: 3569-3578 [18] Curto M, Camafeita E, Lopez J A, Maldonado A M, Rubiales D, Jorrín J V. A proteomic approach to study pea (Pisum sativum)responses to powdery mildew (Erysiphe pisi). Proteomics, 2006, 6: 163-174 [19] Wang Y, Yang L M, Xu H B, Li Q F, Ma Z Q, Chu C G. Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics, 2005, 5: 4496-4503 [20]Feng D-S(封德顺), Xu Q-Y(徐勤迎), Wang H-G(王洪刚), Tian J-C(田纪春). Changes of protein in wheat leaf after the infection of powdery mildew. Acta Agric Boreali-Sin (华北农学报),2007, 22:123-126 (in Chinese with English abstract) [21] Wang Z, Zhao P, Chen H, Peng Y, Xie C, Sun Q, Yang Z. Identification of RAPD markers and development of SCAR markers linked to a powdery mildew resistance gene, and their location on chromosome in wheat cultivar Brock. Plant Prod Sci, 2005, 8: 578-585 [22] Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anual Biochem,1976, 72: 248-254 [23] O’Farrell P H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem,1975, 250: 4007-4021 [24] Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680-685 [25] Neuhoff V, Arold N, Taube D, Ehrhardt W. Improved staining of proteins in polyacrylami de gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie brilliant blue G-250 and R-250. Electrophoresis, 1988, 9: 255-262 [26] Xie D X, Feys B F, James S, Nieto M, Turner J G.COI1: An Arabidopsis gene required for jasmonate regulateddefense and fertility. Science, 1998, 280: 1091-1094 [27] Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper J W, Elledge S J. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell, 1996, 86: 263-274 [28] Ward E R, Payne G B, Moyer M B. Differential regulation of β-1,3-glucanase messenger RNAs in response to pathogen infection. Plant Physiol, 1991, 96: 390-397 [29] Selitrennikoff C P. Antifungal proteins. Appl Environ Microbiol, 2001, 67: 2883-2894 [30] Anfoka G, Buchenauer H. Systemic acquired resistance in tomato against Phytophthora infestans by pre-inoculation with tobacco necrosis virus. Physiol Mol Plant Pathol, 1997, 50: 85-101 [31] Esquerré-Tugaé M T, Boudart G, Dumas B. Cell wall degrading enzymes, inhibitory proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens. Plant Physiol Biochem, 2000, 38: 157-163 [32] Klarzynski O, Plesse B, Joubert J M. Linear β-1,3-glucanase are elicitors of defense responses in tobacco. Plant Physiol, 2000, 124: 1027-1037 [33] Ham K S, Wu S C, Darvill A G. Fungal pathogens secrete an inhibitor protein that distinguishes isoforms of plant pathogenesis-related endo-β-1,3-glucanase. Plant J, 1997, 11: 169-179 |
[1] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[2] | GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272. |
[3] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[4] | SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811. |
[5] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[6] | FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715. |
[7] | LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725. |
[8] | YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436. |
[9] | WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462. |
[10] | CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487. |
[11] | XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447. |
[12] | MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164. |
[13] | MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75. |
[14] | WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47. |
[15] | LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62. |
|