Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (05): 713-720.doi: 10.3724/SP.J.1006.2010.00713

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Genetic Analysis and Fine-Mapping of Gws Gene Using green-white-stripe Rice Mutant

XU Feng-Hua1,CHENG Zhi-Jun1,WANG Jiu-Lin1,WU Zi-Ming1,SUN Wei2,ZHANG Xin1,WANG Jie1,WU Fu-Qing1,GUO Xiu-Ping1,LIU Ling-Long3,WAN Jian-Min1,3,*   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Linyi Academy of Agricultural Sciences, Linyi 276012, China; 3 State Key Laboratory of Crop Genetics and Germplasm Enhancement / Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2009-11-25 Revised:2010-02-07 Online:2010-05-12 Published:2010-03-15
  • Contact: WAN Jian-min, E-mail: wanjm@caas.net.cn

Abstract:

Fine mapping and cloning of genes for leaf color mutation are of great importance in the study of chlorophyll biosynthesis and the structure, function, genetics and development of chloroplast in plant. A temperature-sensitive green-white-stripe leaf mutant gws was isolated from a rice T-DNA insertion mutant pool. Genetic analysis showed that the mutation was generated in tissue culture, rather than by T-DNA insertion, and it was controlled by a recessive nuclear gene. Linkage analysis of stripe plants with homologous recessive genes in an F2 population from the cross of gws × PA 64 indicated that Gws was flanked by the SSR markers of RM19680 and RM136 on Chromosome6, with genetic distances of 1.1 cM and 3.6 cM, respectively. The gene was further delimited by the newly developed markers InDel 15 and InDel 16 into a 73 kb region. A total of 13 genes, including 3 candidate leaf color genes, were found at this interval. Sequence alignments of these candidate genes between the wild-type and mutant revealed at least two bases deletion in the exon of LOC Os06g14620 (ribonucleoside-diphosphate reductase small chain), resulting in a frame-shift mutation and a premature stop codon. The same gene mutation caused by similar green-white-stripe (St1-Stripe 1) was documented previously. A slightly different phenotypes were observed between the mutants st1 and gws. In st1 plants, chlorotic leaves with a few longitudinal green stripes were observed until the fourth or fifth leaf blade mergence and the phenotype was later than that in gws emerged from second leaf seedling.

Key words: Rice, Mutant, Chloroplast, green-white-stripe, stl mutant

[1]Victor I K, Fabienne P C, Michel H, Pascale C D, Danja S, Karin M, Patrice G, Jonathan DGJ, Neil EH, Laurent N. A chromodomain protein encoded by the arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell, 1999, 1: 87-99
[2]Chen G, Bi Y R, Li N. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J, 2005, 41: 364-375
[3]Shoshi K,Kouji S, Toshifumi N, Nobuyuki K, Koji D, Naoki K, Junshi Y, Masahiro I, Hitomi Y, Hisako O, Isamu H, Keiichi K, Takahiro N, Eisuke O, Wataru Y, Kohji S, Chao J L, Kenji O, Toru S, Yasuhiro O, Kazuo M, Yoshiharu I, Sumio S, Tatsuto F, Yutaka S, Yuki T, Takashi K, Takeko K, Hiromi M, Michie K, Xie Q H, Lu M, Ryuya N, Akio S, Kouichi M, Satoko Y, Junko N, Rieko I, Junya I, Midori K, Akemi Y, Junichirou M, Takahiro K, Mitsuru O, Risa R, Mariko U, Kenichi M, Jun K W, Piero C, Adachi J, Katsunori A, Takahiro A, Shiro F, Ayako H, Wataru H, Norihito H, Koichi I, Yoshiki I, Masayoshi I, Ikuko K, Shinji K, Hedeaki K, Miyazaki A , Naoki O, Yoshimi O, Rintaro S, Daisuke S, Kenjiro S, Kazuhiro S, Akira S, Toshiyuki S, Masayasu Y, Yoshihide H. Collection, mapping and annotation of over 28000 cDNA clones from japonica rice. Science, 2003, 301: 376- 379
[4]Yeisoo Y, Teri R, Jennifer C, Christopher S, Hye R K, Kristi C, Shelly T, Jessica S, Yang T J, Gyoungju N, Ami J P, Scheen T, David H, Ryan O, Michael P, Gina P, Jennifer G, Heidi A, Manjiri P, Lindsay C, Jeff D, Megan B C, Todd W, David F, Friedrich E, Cari S, Lance E P, Leonid T, Lidia N, Melissa D B, Lori S, Doreen W, Andrew O, Sujit D, Neilay D, Raymond P, Emily H, Kristin F, Kathy K, Beth M, Theresa Z, Frederick K, Stephanie M, Vivekanand B, Robert A. M, Lincoln S, Pat M, Doug J, Holly C, Elaine M, Cheng Z K, Jiang J M, Richard W, McCombie W R, Rod A W, Yuan Q P, Shu O Y, Liu J, Kristine M J, Kristen G, Kelly M, Jessica H, Tamara T, Larry O, Jyati B, Mary K, Jin S H, Luke T, Anne C, Grace P, Susan V A, Terry U, Steve R, Bormann J, Tamara F, Joseph H, Victoria Z, Stacey B, Aymeric V, Tristan S, Hean K, Bernard S, Qi Y, Brian H, Jeremy P, Mihaela P, Natalia V. The rice chromosome 10 sequencing consortium. In-depth view of structure, activity, and evolution of rice chromosome 10. Science, 2003, 300: 1566-1569
[5]Kensuke K, Akiko M, Mitsuo N, Koh I. A virescent gene V1 determines the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice
[J].Plant J
[6]Li H-C(李红昌), Qian Q(钱前), Wang B(王斌), Li X-B(李晓波), Zhu L-H(朱立煌), Xu J-C(徐吉臣). Identification and chromosomal localization of rice white panicle. Chine Sci Bull (科学通报), 2003, 48(3): 268-270 (in Chinese)
[7]International Rice Genome Sequence Project. The map-based sequence of the rice genome. Nature, 2005, 436: 793-800
[8]Xue Y B, Li J Y, Xu Z H. Recent highlights of the China rice functional genomics program
[J].Trends Genet
[9]Kensuke K, Hisayo K, Hikaru S, Koh I. Characterization of a zebra mutant of rice with increased susceptibility to light stress. Plant Cell Physiol, 2000, 41: 158-164
[10]Li N(李娜), Chu H-W(储黄伟), Wen T-Q(文铁桥), Zhang D-B(张大兵). Genetic analysis and mapping of the rice white midrib mutant Oswm. Acta Agric Shanghai (上海农业学报), 2007, 23(1): 1-4 (in Chinese with English abstract)
[11]Hu J-T(胡景涛), Zhang J(张甲), Li Y-Y(李园园), Fu C-Y(付崇允), Zheng J(郑静), Chen J-B(陈家彬), Hu Y(胡燕), Li S-G(李仕贵). Genetic analysis and mapping of a rice white midrib mutant Oswm2. Hereditas (遗传), 2008, 31(9): 1201-1206 (in Chinese with English abstract)
[12]Jung K H, Hur J, Ryu C H, Chung Y Y, Miyao A, Hirochika H, Gynheung A Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system.
[J]. Plant Cell Physiol
[13]Zhang H T, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development
[J]. Plant Mol Biol
[14]Sichul L, Kim J H, Yoo E S, Lee C H, Hirohiko H, Gynheung A. A differential regulation of chlorophyll a oxygenase genes in rice
[J].Plant Mol Biol
[15]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis
[J].Plant Physiol
[16]Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic systerm at an early stage of chloroplast differentiation
[J].Plant Cell Physiol
[17]Gothandam K M, Kim E S, Cho H J, Chung Y Y. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis
[J]. Plant Mol Biol
[18]Park S Y, Yu J W, Park J S, Li J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J, Jeon J S, Park Y I, Paek N C. The senescence-induced stay green protein regulates chlorophyll degradation
[J]. Plant Cell
[19]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence
[J].Plant Cell
[20] Yutaka S, Ryouhei M, Susumu K, Minoru N, Ayumi T, Makoto K. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J, 2009, 57: 120-131
[21]Lichtenthaler H K. Chlorophylls and carotenoids: Pigments of photosynthetic membranes. In: Packer L, Douce R, eds. Methods in Enzymology. New York: Academic Press,1987. pp 350-382
[22]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA
[J]. Nucl Acids Res
[23]Sanguinetti C J, Dias N E, Simpson A J G. Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques, 1994, 17: 915-919
[24]Li Q(李强), Wan J-M(万建民). SSRHunter: development of a local searching software for SSR sites. Hereditas (遗传), 2005, 27(5): 803-810 (in Chinese with English abstract)
[25]Matthew J T, Richard E K. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato
[J].Plant Physiol
[26]Ulrike O, Ryouichi T, Ayumi T, Wolfhart R. Clonging and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis(CAO) from Arabidopsis thaliana
[J].Plant J
[27]Jung K H, Lee J, Chris D, Seo Y S, Cao P J, Patrick, Jirapa P, Xu X, Shu O Y, Kyungsook A, Cho Y J, Lee G C, Yoosook L, Gynheung A, Pamela C R. Identification and functional analysis of light-responsive unique genes and gene family members in rice. PLoS Genet, 2008, 4(8): e1000164
[28]Tanya G F, Staehilin L A. Partial blocks in the early steps of the chlorophyll synthesis pathway: A common feature of chlorophyll b-deficient mutants
[J].Physiologia Plantarum
[29]Allen K D, Duysen M E, Staehelin L A. Biogenesis of thylakoid membranes is controlled by light intensity in the conditional chlorophyllb-deficient CD3 mutant of wheat
[J].J Cell Biol
[30]Falbel T G, Staehelin L A. characterization of a family of chlorophyll-deficient wheat and barley mutants with defects in the Mg-insertion step of chlorophyll biosynthesis
[J].Plant Physiol,
[31]Falbel T G, Staehelin L A, Adams W W. Analysis of xanthophyll cycle carorenoids and chlorophyll fluorescence in light intensity dependent chlorophyll -deficient mutants of wheat and barley
[J].Photosynth Res
[32]Koomneef M, van Eden J, Hanhart C J, Stam P, Brarksma F J, Feenstra W J. Linkage map of Arabidopsis thaliana. J Hered 1983, 74: 265-272
[33]Reinbothe S, Pollmann S, Springer A, James R J, Tichtinsky G, Reinbothe C. A role of Toc33 in the protochlorophyllide-dependent plastid import pathway of NADPH protochlorophyllide oxidoreductase (POR) A
[J].Plant J
[34]Nagata N, Tanaka R, Satoh S, Tanaka A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species
[J].Plant Cell
[35]Yoo S H, Cho S H, Sugimoto H, Li J J, Kusumi K, Koh H J, Koh I, Paek N C. Rice Virescent-3 and Stripe-1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development
[J].Plant Physiol
[36]Cui H-R(崔海瑞), Xia Y-W(夏英武), Gao M-W(高明尉). Effects of temperature on leaf color and chlorophyll biosynthesis of rice mutant W 1. Acta Agric Nucl Sin (核农学报),2001, 15(5): 269-273 (in Chinese with English abstract)
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[15] DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!