Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (07): 1219-1228.doi: 10.3724/SP.J.1006.2011.01219
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Hua-Zhong,ZHANG Zhen,HE Yang,YUE Jie-Yu
[1]Vanderplank J E. Plant Disease: Epidemics and Control. New York: Academic Press, 1963 [2]Lillemo M, Asalf B, Singh R, Huerta-Espino J, Chen X, He Z, Bjørnstad A. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet, 2008, 116: 1155–1166 [3]Miranda L M, Murphy J P, Marshall D, Cowger C, Leath S. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 114: 1451–1456 [4]Miranda L M, Murphy J P, Marshall D, Leath S. Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 1497–1504 [5]Zhu Z D, Zhou R H, Kong X Y, Dong Y C, Jia J Z. Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome, 2005, 48: 585–590 [6]Hautea R A., Coffman W R, Sorrells M E, Bergstrom G C. Inheritance of partial resistance to powdery mildew in spring wheat. Theor Appl Genet, 1987, 73: 609–615 [7]Shaner G. Evaluation of slow-mildewing resistance of Knox wheat in the field. Phytopathology, 1973, 63: 867–872 [8]Gustafson G D, Shaner G. The influence of plant age on the expression of slow-mildewing resistance in wheat. Phytopathology, 1982, 72: 746–749 [9]Griffey C A, Das M K, Stromberg E L. Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Dis, 1993, 77: 618–622 [10]Griffey C A, Das M K. Inheritance of adult-plant resistance to powdery mildew in Knox62 and Massey winter wheats. Crop Sci, 1994, 34: 641–646 [11]Keller M, Keller B, Schachermayr G, Winzeler M, Schmid J E, Stamp P, Messmer M M. Quantitative trait loci for resistance against powdery mildew in a segregating wheat × spelt population. Theor Appl Genet, 1999, 98: 903–912 [12]Liu S X, Griffey C A, Saghai Maroof M A. Identification of Molecular Markers Associated with Adult Plant Resistance to Powdery Mildew in Common Wheat Cultivar Massey. Crop Sci, 2001, 41: 1268–1275 [13]Chantret N, Mingeot D, Sourdille P, Bernard M, Jacquemin J M, Doussinault G. A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat. Theor Appl Genet, 2001, 103: 962–971 [14]Hu G, Webb C A, Hulbert S H. Adult plant phenotype of the Rp1–DJ compound rust resistance gene in maize. Phytopathology, 1997, 87: 236–241 [15]Penning, B W, Johal G S, McMullen M D. A major suppressor of cell death, slm1, modifies the expression of the maize (Zea mays L.) lesion mimic mutation les23. Genome, 2004, 47: 961–969 [16]Andaya C B, Ronald P C. A catalytically impaired mutant of the rice Xa21 receptor kinase confers partial resistance to Xanthomonas oryzae pv. oryzae. Physiol Mol Plant Pathol, 2003, 62: 203–208 [17]Smith S M, Hulbert S H. Recombination events generating a novel Rp1 race specificity. Mol Plant Microbe Interact, 2005, 18: 220–228 [18]Lawrence G J, Finnegan E J, Ayliffe M A, Ellis J G. The l6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell, 1995, 7: 1195–1206 [19]Stewart H E, Bradshaw J E, Pande B. The effect of the presence of R-genes for resistance to late blight (Phytophthora infestans) of potato (Solanum tuberosum) on the underlying level of field resistance. Plant Pathol, 2003, 52: 193–198 [20]Parniske M, Hammond-Kosack K E, Golstein C, Thomas C M, Jones D A, Harrison K, Wulff B B, Jones J D. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell, 1997, 91: 821–832 [21]Whitaker V M, Zuzek K, Hokanson S C. Resistance of 12 rose genotypes to 14 isolates of Diplocarpon rosae Wolf (rose blackspot) collected from eastern North America. Plant Breed, 2007, 126: 83–88 [22]Li Z K, Arif M, Zhong D B, Fu B Y, Xu J L, Domingo-Rey J, Ali J, Vijayakumar C H, Yu S B, Khush G S. Complex genetic networks underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv. oryzae. Proc Natl Acad Sci USA, 2006, 103: 7994–7999 [23]Parlevliet J E. Race-specific aspects of polygenic resistance of barley to leaf rust, Puccinia hordei. Eur J Plant Pathol, 1978, 84: 121–126 [24]Perchepied L, Dogimont C, Pitrat M. Strain-specific and recessive QTLs involved in the control of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in a recombinant inbred line population of melon. Theor Appl Genet, 2005, 111: 65–74 [25]Darvishzadeh R, Poormohammad Kiani S, Dechamp-Guillaume G, Gentzbittel L, Sarrafi A. Quantitative trait loci associated with isolate specific and isolate nonspecific partial resistance to Phoma macdonaldii in sunflower. Plant Pathol, 2007, 56: 855–861 [26]Arru L, Francia E, Pecchioni N. Isolate-specific QTLs of resistance to leaf stripe (Pyrenophora graminea) in the ‘Steptoe’ × ‘Morex’ spring barley cross. Theor Appl Genet, 2003, 106: 668–675 [27]Wang Z-L(王竹林), Liu S-D(刘曙东), Wang H(王辉), He Z-H(何中虎), Xia X-C(夏先春), Chen X-M(陈新民), Duan X-Y(段霞瑜), Zhou Y-L(周益林). Advances of study on adult-plant resistance in bread wheat. J Triticeae Crops (麦类作物学报), 2006, 26(1): 129–134 (in Chinese with English abstract) [28]Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M S, Weber W E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921–936 [29]Huo N-X(霍纳新), Zhou R-H(周荣华), Zhang L-F(张丽芳), Jia J-Z(贾继增). Mapping quantitative trait loci for powdery mildew resistance in wheat. Acta Agron Sin (作物学报), 2005, 31(6): 692–696 (in Chinese with English abstract) [30]Sheng B-Q(盛宝钦). Investigation of host-plant response to Blumeria graminis f. sp. tritici at seedling stage in wheat. Plant Protect (植物保护), 1988, (1): 49 (in Chinese with English abstract) |
[1] | ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480. |
[2] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[3] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[4] | SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461. |
[5] | Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG,Xiao-Ling WU. QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping [J]. Acta Agronomica Sinica, 2020, 46(3): 341-353. |
[6] | WU Hai-Tao, ZHANG Yong, SU Bo-Hong, Lamlom F Sobhi, QIU Li-Juan. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1667-1677. |
[7] | WANG Cun-Hu,LIU Dong,XU Rui-Neng,YANG Yong-Qing,LIAO Hong. Mapping of QTLs for leafstalk angle in soybean [J]. Acta Agronomica Sinica, 2020, 46(01): 9-19. |
[8] | YANG Xiao-Meng, LI Xia, PU Xiao-Ying, DU Juan, Muhammad Kazim Ali, YANG Jia-Zhen, ZENG Ya-Wen, YANG Tao. QTL mapping for total grain anthocyanin content and 1000-kernel weight in barley recombinant inbred lines population [J]. Acta Agronomica Sinica, 2020, 46(01): 52-61. |
[9] | WANG Da-Chuan,WANG Hui,MA Fu-Ying,DU Jie,ZHANG Jia-Yu,XU Guang-Yi,HE Guang-Hua,LI Yun-Feng,LING Ying-Hua,ZHAO Fang-Ming. Identification of rice chromosome segment substitution Line Z747 with increased grain number and QTL mapping for related traits [J]. Acta Agronomica Sinica, 2020, 46(01): 140-146. |
[10] | Li-Juan WEI,Rui-Ying LIU,Li ZHANG,Zhi-You CHEN,Hong YANG,Qiang HUO,Jia-Na LI. Detection of stem height QTL and integration of the loci for plant height- related traits in B. napus [J]. Acta Agronomica Sinica, 2019, 45(6): 818-828. |
[11] | YAN Chao,ZHENG Jian,DUAN Wen-Jing,NAN Wen-Bin,QIN Xiao-Jian,ZHANG Han-Ma,LIANG Yong-Shu. Locating QTL controlling yield traits in overwintering cultivated rice [J]. Acta Agronomica Sinica, 2019, 45(4): 522-537. |
[12] | ZHANG Chun-Xiao,LI Shu-Fang,JIN Feng-Xue,LIU Wen-Ping,LI Wan-Jun,LIU Jie,LI Xiao-Hui. QTL mapping of salt and alkaline tolerance-related traits at the germination and seedling stage in maize (Zea mays L.) using three analytical methods [J]. Acta Agronomica Sinica, 2019, 45(4): 508-521. |
[13] | LIU Jiang-Ning,WANG Chu-Xin,ZHANG Hong-GEN,MIAO Yi-Xu,GAO Hai-Lin,XU Zuo-Peng,LIU Qiao-Quan,TANG Shu-Zhu. Mapping of QTLs for resistance to rice black-streaked dwarf disease [J]. Acta Agronomica Sinica, 2019, 45(11): 1664-1671. |
[14] | Wen-Xiang WANG,Wen CHU,De-Sheng MEI,Hong-Tao CHENG,Lin-Lin ZHU,Li FU,Qiong HU,Jia LIU. Quantitative trait loci mapping for branch angle and candidate gene screening in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(1): 37-45. |
[15] | Chao LI,Zhi-Kun LI,Qi-Shen GU,Jun YANG,Hui-Feng KE,Li-Qiang WU,Guo-Ning WANG,Yan ZHANG,Jin-Hua WU,Gui-Yin ZHANG,Yuan-Yuan YAN,Zhi-Ying MA,Xing-Fen WANG. Molecular Evaluation for Chromosome Segment Substitution Lines of Gossypium barbadense and QTL Mapping for Fiber Quality and Yield [J]. Acta Agronomica Sinica, 2018, 44(8): 1114-1126. |
|