Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (04): 482-491.doi: 10.3724/SP.J.1006.2016.00482

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of Heterotic Loci for Yield and Ear Traits Using CSSL Test Population in Maize

PENG Qian**,XUE Ya-Dong**,ZHANG Xiang-Ge,LI Hui-Min,SUN Gao-Yang,LI Wei-Hua,XIE Hui-Ling,TANG Ji-Hua*   

  1. Key Laboratory of Wheat and Maize Crops Science / Collaborative Innovation Center of Henan Grain Crops/ College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
  • Received:2015-07-04 Revised:2016-01-11 Online:2016-04-12 Published:2016-01-26
  • Contact: 汤继华, E-mail: tangjihua1@163.com, Tel: 0371-63558377. E-mail:18613706657@163.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China.

Abstract:

Heterosis plays an important role in enhancingcrop yield and quality.Dissecting the genetic basis of heterosis can promote hybrid maize selection, however that is unclear up to now. In this study, a set of chromosome segment substitution lines (CSSLs) population,which was constructed using the inbred line lx9801 as the receptor parent and the inbred line Chang7-2 as the donor parent, was crossed with the inbred line T7296 to construct the corresponding test population. The test population was used to identify the heterotic loci (HL) for grain yield and ear traits in maize,which showed significant difference inheterosisbetween the corresponding chromosomal region of the inbred line Chang7-2 and lx9801as well as the test inbred line T7296. A total of 64HL were identified for gain yield and ear traits, and among them 23 HL were identified at the two environments simultaneously, including 4 HL for ear length, 4 HL for ear width, 4 HL for row number, 7 HL for kernels per row, and 4HL for grain yield. Additionally, the HL for both grain yield and its components simultaneously were found on many chromosomal regions.This study could offer a basic material for thoroughly dissecting the genetic basis of heterosis for grain yield and its components in maize.

Key words: Maize, Chromosome segment substitution lines, Grain yield, Heterosis, Quantitative trait loci

[1]Shull G H. The composition of a field of maize. J Heredity, 1908, 4: 296–301



[2]Bruce A B. The Mendelian theory of heredity and the augmentation of vigor. Science, 1910, 32:627–628



[3]Jones D F. Dominance of linked factors as a means of accounting for heterosis. Proc Natl Acad SciUSA, 1917, 3: 310–312



[4]East E M. Heterosis. Genetics, 1936, 21:375–397



[5]Yu S B, Li J X, Xu C G, Yan Y F, Gao Y J. Importance of epistasis as the genetic basis of the heterosis in an elite rice hybrid. Proc Natl Acad SciUSA, 1997, 94: 9226–9231



[6]Song R T, Messing J. Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad SciUSA, 2003, 100: 9055–9060



[7]Hoecker N, Keller B, Muthreich N, Chollet D, Descombes P, Piepho HP, Hochholdinger F. Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcription suggests organ-specific patterns of nonadditive gene expression and conserved expression trends. Genetics, 2008, 179: 1275–1283



[8]Fu Z Y, Jin X N, Ding D, Li Y L, Fu Z J, Tang J H. Proteomic analysis of heterosis during maize seed germination. Proteomics, 2011, 11:1462–1472



[9]Ding D, Wang Y J, Han M S, Fu Z Y, Li W H, Liu Z H, Hu Y M, Tang J H. MicroRNA transcriptomic analysis of heterosis during maize seed germination. PLoS One, 2012, 7(6):e39578



[10]Guo M, Rupe M A, Wei J, Winkler C, Goncalves-Butruille M, Weers B P, Cerwick S F, Dieter J A, Duncan K E, Howard R J, Hou Z, L?ffler C M, Cooper M, Simmons C R. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J Exp Bot, 2014, 65: 249–260



[11]严建兵, 汤华, 黄益勤, 石永刚, 李建生, 郑用琏. 不同发育时期玉米株高QTL的动态分析. 科学通报, 2003, 48: 1959–1964



Yan JB, Tang H, Huang Y Q, Si Y G, Li J S Zheng Y L. Dynamic QTL analysis for plant height in different developing stages in maize. Chin Sci Bull, 2003,48: 1959–1964(in Chinese with English abstract)



[12]Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson AH. Overdominance epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics, 2001, 158: 1737–1753



[13]Kusterer B, Muminovic J, Utz HF, Piepho HP, Barth S, Heckenberger M, Meyer R C, Altmann T, Melchinger A E. Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics, 2007, 175: 2009–2017



[14]Kusterer B, Piepho HP, Utz HF, Muminovic J, Meyer R C, Altmann T, Melchinger A E. Heterosis for biomassrelated traits in Arabidopsis investigated by a novel QTL analysis of the triple testcross design with recombinant inbred lines. Genetics, 2007, 177:1839–1850



[15]Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S B, Zhang Q F. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad SciUSA, 2003,100: 2574–2579



[16]Xiao J H, Li J M, Yuan L P, Tanksley S D. Dominance is the major genetic basis of the heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995, 140: 745–754



[17]Lu H, Romero-Severson J, Bernarbo R. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet, 2003, 107: 494–502



[18]Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D. Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad SciUSA, 2006, 103: 12981–12986



[19]Krieger U, Lippman ZB, Zamir D. The flowering gene single flower truss drives heterosis for yield in tomato. Nat Genet, 2010, 42: 459–463



[20]Wang Z Q, Yu CY, Liu X, Liu S J, Yin C B, Liu L L, Lei J G, Jiang L, Yang C, Chen L M, Zhai H Q, Wan J M. Identification of indica rice chromosome segments for the improvement of Japonica inbreds and hybrids. Theor Appl Genet, 2012, 124: 1351–1364



[21]Meyer R C, Kusterer B, Lisec J, Steinfath M, Becher M, Scharr H, Melchinger AE, Selbig J, Schurr U, Willmitzer L, Altmann T. QTL analysis of early stage heterosis for biomass in Arabidopsis. Theor Appl Genet, 2010, 120: 227–237



[22]Guo X, Guo Y, Ma J, Wang F, Sun M, Gui L J, Zhou J J, Song X L, Sun X Z, Zhang T Z. Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton. J Integr Plant Biol, 2013, 55: 759–774



[22]Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823–839



[23]王懿波, 王振华, 王永普, 张新, 陆利行. 中国玉米主要种质杂交优势利用模式研究, 中国农业科学, 1997, 30(4) : 16–24



Wang Y B, Wang Z H, Wang Y P, Zhang X, Lu L X. Studies on the heterosis utilizing models of main maize germplasms in China. Sci Agric Sin, 1997, 30(4): 16–24(in Chinese with English abstract)



[24]滕文涛, 曹靖生, 陈彦惠, 刘向辉, 景希强, 张发军, 李建生. 十年来中国玉米杂种优势群及其模式变化的分析. 中国农业科学, 2004, 37: 1804–1811



Teng W T, Cao J S, Chen YH, Liu X H, Jing X Q, Zhang F J, Li J S. Analysis of maize heterotic groups and patterns during past decade in China. Sci Agric Sin, 2004,37: 1804–1811(in Chinese with English abstract)



[25]袁亮, 丁冬, 李卫华, 谢惠玲, 汤继华, 付志远. 玉米优良自交系单片段代换系的构建.玉米科学, 2012, 20(2): 52–55



Yuan L, Ding D, Li W H, Xie H L, Tang J H, Fu Z Y. Construction of single segment substitution lines (SSSLs) of the elite inbred lines in maize.J Maize Sci, 2012, 20(2): 52–55(in Chinese with English abstract)



[26]Duvick D N. Biotechnology in the 1930s: the development of hybrid maize. Nature, 2001, 2: 69–74



[27]Tang J H, Ma X Q, Teng W T, Yan J B, Wu W R, Dai J R, Li J S. Detection of quantitative trait loci and heterosis for plant height in maize in ‘‘immortalized F2’’ (IF2) population. Chin Sci Bull, 2006, 51:2864–2869



[28]Wei X Y, Wang B, Peng Q, Wei F, Mao K J, Zhang X G, Sun P, Liu Z H, Tang J H.  Heterotic loci for various morphological traits of maize detected using a single segment substitution lines test-cross population. Mol Breed, 2015,35(3): 1–13



[29]Tang J H, Yan J B, Ma X Q, Teng W T, Dai J R, Dhillon B S, Melchinger A E. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an “immortalized F2” population. Theor Appl Genet, 2010, 120: 333–340



[30]王懿波, 王振华, 陆利行, 王永普, 张新, 田曾元. 中国玉米种质基础、杂种优势群划分与杂种优势模式研究. 玉米科学, 1998, 6(1): 9–13



Wang Y B, Wang Z H, Lu L H, Wang Y P, Zhang X, Tian Z Y. Studies on maize germplasm base, division of heterosis groups and utilizing models of heterosis in China. J Maize Sci, 1998, 6(1): 9–13(in Chinese with English abstract)



[31]吴金凤, 宋伟, 王蕊, 田红丽, 李雪, 王凤格, 赵久然, 蔚荣海. 利用SNP标记对51份玉米自交系进行类群划分. 玉米科学, 2014, 22(5): 29–34



Wu J F, Song W, Wang R, Tian H L, Li X, Wang F G, Zhao J R, Wei R H. Heteroticgroupingof51maizeinbredlinesbySNPmarkers. J Maize Sci, 2014, 22(5): 29–34(in Chinese with English abstract)

[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[3] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[4] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[5] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[6] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[7] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[8] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[9] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[10] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[11] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[12] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[13] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[14] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[15] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!