Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (04): 492-500.doi: 10.3724/SP.J.1006.2016.00492

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Exploration and Transferability Evaluation of EST-SSRs in Quinoa

ZHANG Ti-Fu1,**,QI Wi-Cong1,**,GU Min-Feng2,ZHANG Xiao-Lin1,LI Tan1,ZHAO Han1,*   

  1. 1 Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; 2 Xinyang Agricultural Experiment Station of Yancheng City, Yancheng 224336, China
  • Received:2015-05-31 Revised:2016-01-11 Online:2016-04-12 Published:2016-01-25
  • Contact: 赵涵, E-mail: zhaohan@jaas.ac.cn, Tel: 025-84390751 E-mail:zhangtifu_82@jaas.ac.cn
  • Supported by:

    This study was supported by Jiangsu Agriculture Science and Technology Innovation Fund (CX(14)2044) and the subproject of “Securing water for food award-salt tolerant quinoa” from USAID (UR4443 B).

Abstract:

Quinoa draws more and more attentions from people, since quinoa seed as grain has comprehensive nutrients.But the fundamental research on quinoa just starts and remains in a moderated level. Simple sequence repeat (SSR) development in quinoa will enhance the resource for its genetic analysis. Here,the available RNA based sequencing (RNA-Seq) and expressed sequence tag (EST) data of quinoa deposited in the National Center for Biotechnology Information (NCBI) were engaged in EST-SSR development.Totally,1862 non-mononucleotide EST-SSRswere identified. Among the EST-SSRs, the dinucleotide type was the most abundant (38.3%), and the hexanucleotidewas the minimal(11.7%). The amount of the EST-SSR showed the declined trend along with the increase in its motif nucleotide length. Among 119 EST-SSR primersrandomly chosen for validation,66(55.9%) primers could give clearamplification bandsand 39 showed polymorphismsinfour quinoa accessions.Further analysis showed that the polymorphisms of EST-SSRs had no significant correlation with their motif nucleotide length. In addition, t-test demonstrated that the significant difference of EST-SSRpolymorphismswas not occurredbetween quinoa accessions and otherChenopodiaceae germplasm. These results indicating EST-SSRs developed in quinoa could be transferable in Chenopodiaceous genus and applied in genetic relationship analysis.

Key words: Quinoa, EST-SSR, Molecular marker, Genetic relationship, Transferability

[1]Razzaghi F, Plauborg F, Jacobsen S, Jensen C R, Andersen M N. Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agric Water Manag, 2012, 109: 20–29

[2]Adolf V I, Jacobsen S, Shabala S. Salt tolerance mechanisms in quinoa(Chenopodium quinoaWilld.). Environ Exp Bot, 2013, 92: 43–54

[3]Ogungbenle H N. Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. Intl J Food SciNutr, 2003, 54: 153–158

[4]Fairbanks D J, Waldrigues A, Ruas C F, Ruas P M, Maughan P J, Robison L R, Andersen W R, Riede C R, Pauley C S, Caetano L G. Efficient characterization of biological diversity using field DNA extraction and random amplified polymorphic DNA markers. Rev Brazil Genet, 1993, 16: 11–22

[5]Mason S L, Stevens M R, Jellen E N, Bonifacio A, Fairbanks D J, Coleman C E, Mccarty R R, Rasmussen A G, Maughan P J. Development and use of  microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoaWilld.). Crop Sci, 2005, 45: 1618–1630

[6]Coles N D, Coleman C E, Christensen S A, Jellen E N, Stevens M R, Bonifacio A, Rojas-Beltran J A, Fairbanks D J, Maughan P J. Development and use of an expressed sequenced tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. Plant Sci, 2005, 168: 439–447

[7]Fuentes F F, Bazile D, Bhargava A, Martínez E A. Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. J AgricSci, 2012, 150: 702–716

[8]Jarvis D E, Maughan P J, Kopp O R, Jellen E N, Mallory M A, Pattee J, BonifacioA, Coleman C E, Stevens M R, Fairbanks D J. Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). J Genet, 2008, 87: 39–51

[9]Maughan P J, Smith S M, Rojas-Beltrán J A, Elzinga D, Raney J A, Jellen E N, Bonifacio A, Udall J A, Fairbanks D J. Single nucleotide polymorphisms identification, characterization and linkage mapping in Chenopodium quinoa. Plant Genome, 2012, 5: 1–7

[10]Eckardt N A. Sequencing the rice genome. Plant Cell, 2000, 12: 2011–2017

[11]Martienssen R A, Rabinowicz P D, O Shaughnessy A, Mccombie W R. Sequencing the maize genome. CurrOpin Plant Biol, 2004, 7: 102–107

[12]Stevens M R, Coleman C E, Parkinson S E, Maughan P J, Zhang H B, Balzotti M R, Kooyman D L, Arumuganathan K, Bonifacio A, Fairbanks D J, Jellen E N, Stevens J J. Construction of a quinoa (Chenopodium quinoaWilld.) BAC library and its use in identifying genes encoding seed storage proteins. TheorAppl Genet, 2006, 112: 1593–1600

[13]Palomino G, Hernández L T, de la Cruz Torres E. Nuclear genome size and chromosome analysis in Chenopodium quinoa and C.berlandieri subsp. nuttalliae. Euphytica, 2008, 164: 221–230

[14]Fuentes F, Bhargava A. Morphological analysis of quinoa germplasm grown under lowland desert conditions. J Agron Crop Sci, 2011, 197: 124–134

[15]Xia H, Zheng X, Chen L, Gao H, Yang H, Long P, Rong J, Lu B, Li J, Luo L. Genetic differentiation revealed by selective loci of drought-responding EST-SSRs between upland and lowland rice in China. PloSOne, 2014, 9: e106352

[16]Asadi A A, Monfared S R. Characterization of EST-SSR markers in durum wheat EST library and functional analysis of SSR-containing EST fragments. Mol Genet Genom, 2014, 289: 625–640

[17]Chuang T, Yang M, Lin C, Hsieh P, Hung L. Comparative genomics of grass EST libraries reveals previously uncharacterized splicing events in crop plants. BMC Plant Biol, 2015, 15: 39–53

[18]Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol, 2011, 29: 644–652

[19]Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978, 89: 583–590

[20]Ott J. Strategies for characterizing highly polymorphic markers in human gene mapping. Am J Human Genet, 1992, 51: 283–290

[21]Rohlf F J. NTSYS-pc: Numerical taxonomy system. ver. 2.1.Setauket, NY: Exeter Publishing Ltd. 2002

[22]Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes.Nucl Acids Res, 1984, 12: 4127–4138

[23]潘海涛, 汪俊君, 王盈盈, 齐照良, 李斯深. 小麦EST-SSR的开发和遗传作图. 中国农业科学,2010, 24: 452–461

Pan H T, Wang J J, Wang Y Y, Qi Z L, Li S S. Development and mapping of EST-SSR marker in wheat. SciAgricSin, 2010, 24: 452–461 (in Chinese with English abstract)

[24]赖勇, 王鹏喜, 范贵强, 司二静, 王晋, 杨轲, 孟亚雄, 李葆春, 马小乐, 尚勋武, 王化俊. 大麦SSR标记遗传多样性及其与农艺性状关联分析. 中国农业科学, 2013,27: 233–242

Lai Y, Wang P X, Fan G Q, Si E J, Wang J, Yang K, Meng Y X, Li B C, Ma X L, Shang X W, Wang H J. Genetic diversity and association analysis using SSR markers in barley. SciAgricSin, 2013, 27: 233–242 (in Chinese with English abstract)

[25]宋海斌, 崔喜波, 马鸿艳, 朱子成, 栾非时. 基于SSR标记的甜瓜品种(系)DNA指纹图谱库的构建. 中国农业科学, 2012, 26: 2676–2689

Song H B, Cui X B, Ma H Y, Zhu Z C, Luan F S. Construction of DNA fingerprint database based on SSR marker for varieties (lines) of CucumismeloL.SciAgricSin, 2012, 26: 2676–2689 (in Chinese with English abstract)

[26]王西成, 姜淑苓, 上官凌飞, 曹玉芬, 乔玉山, 章镇, 房经贵. 梨EST-SSR标记的开发及其在梨品种遗传多样性分析中的应用评价. 中国农业科学, 2010, 24: 5079–5087

Wang X C, Jiang S L, Shang-guan L F, Cao Y F, Qiao Y S, Zhang Z, Fang J G. Development of EST-derived SSR markers for pear and evaluation of their application in pear genetic diversity  analysis.SciAgricSin, 2010, 24: 5079–5087 (in Chinese with English abstract)

[27]张体付, 葛敏, 韦玉才, 赵涵. 玉米功能性Insertion/Deletion(InDel)分子标记的挖掘及其在杂交种纯度鉴定中的应用. 玉米科学, 2012, 20: 64-68

Zhang T F, Ge M, Wei Y C, Zhao H. Discovery for maize function Insertion/Deletion (InDel) polymorphic marker and its implication in purity identification of maize hybrid seeds. JMaize Sci, 2012, 20: 64–68 (in Chinese with English abstract)

[28]戚维聪, 程计华, 黄邦全, 李坦, 林峰. 基于海甘蓝RNA-Seq序列开发EST-SSR分子标记. 江苏农业学报, 2014, 30: 997–1002

Qi W C, Cheng J H, Huang B Q, Li T, Lin F. Development and characterization of EST-SSRmarkers derived from RNA-Seq in Crambeabyssinica. Jiangsu J AgricSci,2014, 30: 997–1002 (in Chinese with English abstract)

[29]束永俊, 李勇, 吴娜拉胡, 柏锡, 才华, 纪巍, 朱延明. 大豆EST-SNP的挖掘、鉴定及其CAPS标记的开发. 作物学报, 2010, 36: 574–579

Su Y J, Li Y, Wu N L H, Bai X, Cai H, Ji W, Zhu Y M. Mining and identification of SNP from EST sequences and conversion of CAPS markers in soybean. ActaAgronSin, 2010, 36: 574–579 (in Chinese with English abstract)

[30]Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics, 2000, 156: 847–854

[31]李淑娴, 张新叶, 王英亚, 尹佟明. 桉树EST序列中微卫星含量及相关特征. 植物学报, 2010, 45: 363–371

Li S X, Zhang X Y, Wang Y Y, Yi T M. Content and characteristics of microsatellites detected in expressed sequence tag sequences in Eucalyptus. Chin Bull Bot, 2010, 45: 363–371(in Chinese with English abstract)

[32]Gao L, Tang J, Li H, Jia J. Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed, 2003, 12: 245–261

[33]程海亮, 陆才瑞, 邹长松, 余道乾, 姜鹏飞, 杨文翠, 张友平, 王巧连, 宋国立. 基于10个棉花腺体相关材料转录组的EST-SSR标记开发. 棉花学报, 2015, 27: 1–8

Cheng H L, Lu C R, Zou C S, Yu D Q, Jiang P F, Yang W C, Zhang Y P, Wang Q L, Song G L. Development of EST-SSR markers in cotton based on the transcriptome information of 10 gland related materials. Cotton Sci, 2015, 27: 1–8(in Chinese with English abstract)

[34]Chabane K, Ablett G A, Cordeiro G M, Valkoun J, Henry R J. EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet Resourc Crop Evol, 2005, 52: 903–909

[35]Cho Y G, Ishii T, Temnykh S, Chen X, Lipovich L, Mccouch S R, Park W D, Ayres N, Cartinhour S. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). TheorAppl Genet, 2000, 100: 713–722

[36]Temnykh S, Declerck G, Lukashova A, Lipovich L, Cartinhour S, Mccouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res, 2001, 11: 1441–1452

[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[3] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[4] WANG Yin, FENG Zhi-Wei, GE Chuan, ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, YAN Su-Xian, ZHENG Jun, ZHENG Xing-Wei. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding [J]. Acta Agronomica Sinica, 2021, 47(8): 1511-1521.
[5] DENG Yan, WANG Juan-Ling, WANG Chuang-Yun, ZHAO Li, ZHANG Li-Guang, GUO Hong-Xia, GUO Hong-Xia, QIN Li-Xia, WANG Mei-Xia. Effects of combined application of bio-bacterial fertilizer and inorganic fertilizer on agronomic characters, yield, and quality in quinoa [J]. Acta Agronomica Sinica, 2021, 47(7): 1383-1390.
[6] HE Jun-Yu, YIN Shun-Qiong, CHEN Yun-Qiong, XIONG Jing-Lei, WANG Wei-Bin, ZHOU Hong-Bin, CHEN Mei, WANG Meng-Yue, CHEN Sheng-Wei. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants [J]. Acta Agronomica Sinica, 2021, 47(5): 974-982.
[7] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[8] ZHANG Xue-Cui, SUN Su-Li, LU Wei-Guo, LI Hai-Chao, JIA Yan-Yan, DUAN Can-Xing, ZHU Zhen-Dong. Identification of resistance gene against phytophthora root rot in new soybean lines breeded in Henan province [J]. Acta Agronomica Sinica, 2021, 47(2): 275-284.
[9] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[10] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[11] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[12] Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340.
[13] Ping ZHANG,Yi-Mei JIANG,Peng-Hui CAO,Fu-Lin ZHANG,Hong-Ming WU,Meng-Ying CAI,Shi-Jia LIU,Yun-Lu TIAN,Ling JIANG,Jian-Min WAN. Introducing qSS-9 Kas into Ningjing 4 by molecular marker-assisted selection to improve its seed storage ability [J]. Acta Agronomica Sinica, 2019, 45(3): 335-343.
[14] Pi-Biao SHI,Bing HE,Yue-Yue FEI,Jun WANG,Wei-Yi WANG,Fu-You WEI,Yuan-Da LYU,Min-Feng GU. Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa [J]. Acta Agronomica Sinica, 2019, 45(12): 1841-1850.
[15] XU Yi,ZHANG Lie-Mei,GUO Yan-Chun,QI Jian-Min,ZHANG Li-Lan,FANG Ping-Ping,ZHANG Li-Wu. Core collection screening of a germplasm population in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2019, 45(11): 1672-1681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!