Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (05): 684-689.doi: 10.3724/SP.J.1006.2016.00684
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
CHU Zhi-Zhan1,GUO Hai-Bin2,LIU Xiao-Lin3,CHEN Yuan-Ling1,LIU Yao-Guang1,*
[1]Leister D. Chloroplast research in the genomic age. Trends Genet, 2003, 19: 47–56
[2]董凤高, 朱旭东, 熊振民. 以淡绿叶为标记的籼型光−温敏核不育系M2S的选育. 中国水稻科学, 1995, 9: 65–70 Dong F G, Zhu X D, Xiong Z M. Breeding of a photo-thermoperiod sensitive genic male sterile indica rice with a pale-green-leaf marker. Chin J Rice Sci, 1995, 9: 65–70 (in Chinese with English abstract) [3]Larkin R M, Alonso J M, Ecker J R, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science, 2003, 299: 902–906 [4]Wang P Y, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J. Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994–1003 [5]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-de?cient rice mutant with impaired chlorophyllide esteri?cation in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40 [6]Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805–818 [7]Fang J, Chai C, Qian Q, Li C L, Tang J Y, Sun L, Huang Z J, Guo X L, Sun C H, Liu M, Zhang Y, Lu Q T, Wang Y Q, Lu C M, Han B, Chen F, Cheng Z K, Chu C C. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to preharvest sprouting and photo-oxidation in rice. Plant J, 2008, 54: 177–189 [8]Gothandam K M, Kim E S, Chung Y Y. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol, 2005, 58: 421–433 [9]Kusumi K, Yara A, Mitsui N, Tozawa Y, Iba K. Characterization of a rice nuclear- encoded plastid rna polymerase gene OsRpoTp. Plant Cell Physiol, 2004, 45: 1194–1201 [10]Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikochi S, Iba K. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol, 2004, 45: 985–996 [11]Zhao C F, Xu J M, Chen Y, Mao C Z, Zhang S L, Bai Y H, Jiang D A, Wu P. Molecular cloning and characterization of OsCHR4, a rice chromatin-remodeling factor required for early chloroplast development in adaxial mesophyll. Planta, 2012, 236: 1165–1176 [12]Jiang H W, Li M L, Liang N T, Yan H B, Wei Y B, Xu X L, Liu J, Xu J F, Chen F, Wu G J. Molecular cloning and function analysis of the stay green gene in rice. Plant J, 2007, 52: 197–209 [13]Sakuraba Y, Park S, Paek N. The divergent roles of STAYGREEN (SGR) homologs in chlorophyll degradation. Mol Cells, 2015, 38: 390–395 [14]Park S, Yu J, Park J, Li J, Yoo S, Lee N, Jeong S. The senescence-induced stay-green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649–1664 [15]Kusaba M, Ito H, Morita R, Morito R, Lida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362–1375 [16]Wellburn A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Plant Physiol, 1994, 144: 307–313 [17]Guillemaut P, Mardchal-Drouard L. Isolation of plant DNA: A fast, inexpensive, and reliable method. Plant Mol Biol Rep, 1992, 10: 60-65 [18]王慧娜, 初志战, 马兴亮, 李日清, 刘耀光. 高通量PCR模板植物基因组DNA制备方法. 作物学报, 2013, 39: 1200–1205 Wang H N, Chu Z Z, Ma X L, Li R Q, Liu Y G. A high through-put protocol of plant genomic DNA preparation for PCR. Act Agron Sin, 2013, 39: 1200–1205 (in Chinese with English abstract) [19]刘朝辉, 李小艳, 张建辉, 林冬枝, 董彦君. 一个新的水稻叶绿素缺失黄叶突变体的特征及基因分子定位. 遗传, 2012, 34: 223–229 Liu C H, Li X Y, Zhang J H, Lin D Z, Dong Y J. Characteristics and molecular mapping of a novel chlorophyll-deficient yellow-leaf mutant in rice. Hereditas (Beijing), 2012, 34: 223–229 (in Chinese with English abstract) [20]孙小秋, 王 兵, 肖云华, 万春美, 邓晓建, 王平荣. 水稻ygl98黄绿叶突变基因的精细定位与遗传分析. 作物学报, 2011, 37: 991–997 Sun X Q, Wang B, Xiao Y H, Wan C M, Deng X J, Wang P Y. Genetic analysis and fine-mapping of ygl98 yellow-green leaf gene in rice. Acta Agron Sin, 2011, 37: 991-997 (in Chinese with English abstract) [21]孔萌萌, 余庆波, 张慧绮, 盛春, 周根余, 杨仲南. 控制水稻叶绿体发育基因OsALB23的定位. 植物生理与分子生物学学报, 2006, 32: 433–437 Kong M M, Yu Q B, Zhang H Q, Sheng C, Zhou G Y, Yang Z N. Genetic mapping of rice gene OsALB23 regulating chloroplast development. J Plant Physiol Mol Biol, 2006, 32: 433–437 (in Chinese with English abstract) [22]Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C R, Meng B Y, Li Y Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M. The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet, 1989, 217: 185–194 [23]Cui L, Veeraraghavan N, Richter A, Wall K, Jansen R K, Leebens-Mack J, Makalowska L, Claude W. Chloroplast DB: The chloroplast genome database. Nucleic Acids Res, 2006, 34: 692–696 [24]Albertsson P. A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci, 2001, 6: 349–354 [25]Hajdukiewicz P T, Allison L A, Maliga P. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J, 1997, 16: 4041–4048 [26]周华, 潘佑找, 刘秀艳, 马晓静, 陈素丽, 林冬枝, 王俊敏, 董彦君, 滕胜. 一个新的水稻叶绿素缺失黄叶突变体遗传分析及其基因定位. 分子植物育种, 2013, 11: 145–151 Zhou H, Pan Y Z, Liu X Y , Ma X J, Chen S L, Lin D Z, Wang J M, Dong Y J, Teng S. Genetic analysis and molecular mapping of a novel yellow leaf mutant in rice. Mol Plant Breed, 2013, 11: 145–151 (in Chinese with English abstract) [27]王军, 王宝和, 周丽慧, 徐洁芬, 顾铭洪, 梁国华. 一个水稻新黄绿叶突变体基因的分子定位. 中国水稻科学, 2006, 20: 455–459 Wang J, Wang B H , Zhou L H , Xu J F, Gu M H, Liang G H. Genetic analysis and molecular mapping of a new yellow-green leaf gene ygl-2 in rice. Chin J Rice Sci, 2006, 20: 455–459 (in Chinese with English abstract) |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[7] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[8] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[9] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[10] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[11] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[12] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[13] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[14] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[15] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
|