Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (06): 811-820.doi: 10.3724/SP.J.1006.2017.00811
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZOU Xue1,2,DENG Meng-Sheng2,LI Li-Qin2,YU Jin-Long1,DING Fan1,HUANG Xue-Li2,PENG Jie2,SHUAI Yu2,CAI Cheng-Cheng2,WANG Xi-Yao2,*
[1] Bamberg J B. Tuber dormancy lasting eight years in the wild potato Solanum jamesii. Am J Potato Res, 2010, 87: 226–228 [2] 樊荣, 宋波涛, 谢从华, 柳俊. 春秋两季马铃薯微型薯休眠期及发芽特性比较分析. 中国马铃薯, 2009, 23(5): 277–280 Fan R, Song P T, Xie C H, Liu J. Comparison of dormancy and sprouting between potato minitubers produced in spring and autumn seasons. Chin Potato J, 2009, 23(5): 277–280 (in Chinese with English abstract) [3] 肖关丽, 郭华春. 不同生理年龄马铃薯种薯芽中的内源激素含量变化及其对马铃薯植株生长发育的影响. 植物生理学报, 2007, 43: 818–820 Xiao G L, Guo H C. Changes in endogenous hormone contents in bud of seed potato (Solanum tuberosum L.) with different physiological ages and its effect on growth and development. Plant Physiol J, 2007, 43: 818–820 (in Chinese with English abstract) [4] Aksenova N P, Sergeeva L I, Konstantinova T N, Golyanovskaya S A, Kolachevskaya O O, Romanov G A. Regulation of potato tuber dormancy and sprouting. Russian J Plant Physiol, 2013, 60: 301–312. [5] Hartmann A, Senning M, Hedden P, Sonnewald U, Sonnewald S. Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellin. Plant Physiol, 2011, 155: 776–779 [6] Korableva N P, Platonova T A, Dogonadze M Z, Evaunina A S. Brassinolide effect on growth of apical meristems, ethylene production, and abscisic acid content in potato tubers. Biol Plant, 2002, 45: 39–43 [7] Clouse S D, Sasse J M. BRASSINOSTEROIDS: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 427–451 [8] Steber C M, Mccourt P. A Role for Brassinosteroids in germination in Arabidopsis. Plant Physiol, 2001, 125: 763–769 [9] 董登峰, 李杨瑞, 江立庚. 油菜素内酯对铝胁迫大豆光合特性的影响. 作物学报, 2008, 34: 1673–1678 Dong D F, Li Y R, Jiang L G. Effects of brassinosteroid on photosynthetic characteristics in soybean under aluminum stress. Acta Agron Sin, 2008, 34: 1673–1678 (in Chinese with English abstract) [10] Choe S, Noguchi T, Fujioka S, Takatsuto S, Tissier C P, Gregory B D, Ross A S, Tanaka A, Yoshida S, Tax F E, Feldmann K A. The Arabidopsis dwf 7/ste1 mutant is defective in the Δ7 sterol C-5 desaturation dtep leading to brassinosteroid biosynthesis. Plant Cell, 1999, 11: 207–221 [11] Choe S, Dilkes B P, Gregory B D, Ross A S, Yuan H, Noguchi T, Fujioka S, Takatsuto S, Tanaka A, Yoshida S, Tax F E, Feldmann K A. The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiol, 1999, 119: 897–907 [12] Mi K, Fujioka S, Ji H J, Kim H B, Takatsuto S T. A double mutant for the CYP85A1 and CYP85A2 genes of Arabidopsis exhibits a brassinosteroid dwarf phenotype. J Plant Biol, 2005, 48: 237–244 [13] Clouse S D. Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell, 2011, 23: 1219–1230 [14] Tang W Q, Kim T W, Oses-Prieto J A, Sun Y, Deng Z P, Zhu S W, Wang R J, Burlingame A L, Wang Z Y. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science, 2008, 321: 557–560 [15] Zhang C, Xu Y Y, Guo S Y, Zhu J Y, Huan Q, Liu H H, Wang L, Luo G Z, Wang X J, Chong K. Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PloS Genet, 2012, 8: e1002686 [16] Hu Y, Bao F, Li J. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J, 2000, 24: 693–701 [17] Xu W, Purugganan M M, Polisensky D H, Antosiewicz D M, Fry S C, Braam J. Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell,1995, 7: 1555–1567 [18] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25: 402–408 [19] Gachotte D, Meens R, Benveniste P. An Arabidopsis mutant deficient in sterol biosynthesis: heterologous complementation by ERG 3 encoding a Δ7-sterol-C-5-desaturase from yeast. Plant J, 1995, 8: 407–416 [20] Iliev E A, Xu W, Polisensky D H, Oh M H, Torisky R S, Clouse S D, Braam J. Transcriptional and posttranscriptional regulation of Arabidopsis TCH4 expression by diverse stimuli: roles of cis regions and brassinosteroids. Plant Physiol, 2002, 130: 770–783 [21] Divi U K, Krishna P. Overexpression of the brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings. Plant Growth Regul, 2010, 29: 385–393 [22] Ahammed G J, Zhang S, Shi K, Zhou Y H, Yu J Q. Brassinosteroid improves seed germination and early development of tomato seedling under phenanthrene stress. Plant Growth Regul, 2012, 68: 87–96 [23] Hu Y R, Yu D Q. BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. Plant Cell, 2014, 26: 4393–4408 [24] Bai M Y, Shang J X, Oh E, Fan M, Bai Y, Zentella R, Sun T P, Wang Z Y. Brassinosteroid, gibberellins and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol, 2012, 14: 810–816 [25] Gallego-Bartolomé J, Minguet E G, Grau-Enguix F, Abbas M, Locascio A, Thomas S G, Alabadí D, Blázquez M A. Molecular mechanism for the interaction between gibberellins and brassinosteroid signaling pathways in Arabidopsis. Proc Natl Acad Sci USA, 2012, 109: 13446–13451 [26] Tong H N, Xiao Y H, Liu D P, Gao S P, Liu L C, Yin Y H, Jin Y, Qian Q, Chu C C. Brassinosteroid regulates cell elongation by modulating gibberellins metabolism in rice. Plant Cell, 2014, 26: 4376–4393 [27] 张海丽, 高静, 张昊, 李生辉, 邢继红, 王凤茹, 董金皋. 油菜素内酯对水稻细胞伸长和分裂的调控. 农业生物技术学报, 2015, 23: 71–79 Zhang H L, Gao J, Zhang H, Li S H, Xing J H, Wang F R, Dong J G. The regulation of brassinosteroid (BR) on elongation and division of rice (Oryza sativa) cells. J Agric Biotechnol, 2015, 23: 71–79 (in Chinese with English abstract) [28] Zullo M A T, Adam G. Brassinosteroid phytohormones-structure, bioactivity and applications. Braz J Plant Physiol, 2002, 14: 143–181 [29] 刘海英, 郭天财, 朱云集, 王晨阳, 康国章. 开花期外施表油菜素内酯(epi-BR)对小麦籽粒淀粉积累及其关键酶活性的影响. 作物学报, 2006, 32: 924–930 Liu H Y, Guo T C, Zhu Y J, Wang C Y, Kang G Z. Effects of epi-brassinolide (epi-BR) application at anthesis on starch accumulation and activities of key enzymes in wheat grains. Acta Agron Sin, 2006, 32: 924–930 (in Chinese with English abstract) [30] Divi U K, Krishna P. Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol, 2009, 26: 131–136 [31] Wu C Y, Trieu A, Radhakrishnan P, Kwok S F, Harris S, Zhang K, Wang J, Wan J, Zhai H, Takatsuto S, Matsumoto S, Fujioka S, Feldmann K A, Pennell R I. Brassinosteroids regulate grain filling in rice. Plant Cell, 2008, 20: 2130–2145 [32] Schr?der F, Lisso J, Obata T, Erban A, Maximova E, Giavalisco P, Kopka J, Fernie A R, Willmitzer L, Müssig C. Consequences of induced brassinosteroid deficiency in Arabidopsis leaves. BMC Plant Biol, 2014, 14: 309–322 |
[1] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[2] | WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278. |
[3] | SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297. |
[4] | FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907. |
[5] | ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929. |
[6] | JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623. |
[7] | TAN Xue-Lian, GUO Tian-Wen, HU Xin-Yuan, ZHANG Ping-Liang, ZENG Jun, LIU Xiao-Wei. Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau [J]. Acta Agronomica Sinica, 2022, 48(3): 682-694. |
[8] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[9] | CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487. |
[10] | ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528. |
[11] | JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98. |
[12] | XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85. |
[13] | WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449. |
[14] | ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459. |
[15] | SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308. |
|