Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (11): 1643-1649.doi: 10.3724/SP.J.1006.2017.01643

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping Stripe Rust Resistance Gene YrZM103 in Wheat Cultivar Zhengmai 103 by BSR-Seq

ZHANG Huai-Zhi1,XIE Jing-Zhong2,CHEN Yong-Xing2,LIU Xu3,WANG Yong1,WU Qiu-Hong2,Lu Ping2,ZHANG De-Yun1,LI Miao-Miao1,GUO Guang-Hao1,YAN Su-Hong3,YANG Zhao-Sheng3,ZHAO Hong4,WANG Xi-Cheng4,JIA Lianhe5,CAO Ting-Jie4,*,LIU Zhi-Yong2,*   

  1. 1 College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; 2 State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; 3 Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; 4Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; 5Tangxian Vocational and Technical Educational Center, Tangxian, Hebei 072350, China
  • Received:2017-01-13 Revised:2017-07-23 Online:2017-11-12 Published:2017-08-10
  • Contact: 刘志勇, E-mail: zyliu@genetics.ac.cn; 曹廷杰, E-mail: caotingjie893@163.com E-mail:huaizhizhang0066@163.com
  • Supported by:

    This study was supported by the National Key Research and Development Program of China (2017YFD0101802).

Abstract:

Zhengmai 103 is a new wheat cultivar highly resistant to stripe rust. In order to detect the stripe rust resistance gene in Zhengmai 103, a segregating population was developed by making cross between Zhengmai 103 and a highly stripe rust susceptible wheat cultivar Nongda 399. The 214 F2 derived F2:3 progenies were inoculated with mixed prevailing Pst races CYR32, CYR33 and CYR34 (V26) in field condition for disease resistance evaluation at adult plant stage. Genetic analysis revealed that the stripe rust resistance of Zhengmai 103 is controlled by a single gene, temporarily designated YrZM103. By applying RNA-seq with bulked segregant analysis (BSA), six polymorphic markers were developed to map YrZM103 on chromosome 7BL flanked by markers ZM215 and ZM221 with genetic distances of 6.9 and 11.8 cM, respectively. Comparative genetic mapping indicated YrZM103 was located on different genetic interval from that of known stripe rust resistance genes on 7BL.

Key words: Zhengmai 103, Stripe rust, Molecular marker, BSR-Seq, Wheat

[1] 李振岐, 曾士迈. 中国小麦锈病. 北京: 中国农业出版社, 2002. pp 370–373
Li Z Q, Zeng S M. Wheat Rust in China. Beijing: China Agriculture Press, 2002. pp 370–373 (in Chinese)
[2] 康振生, 王晓杰, 赵杰, 汤春蕾, 黄丽丽.小麦条锈菌致病性及其变异研究进展. 中国农业科学, 2015, 48: 3439–3453
Kang Z S, Wang X J, Zhao J, Tang C L, Huang L L. Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Sci Agric Sin, 2015, 48: 3439–3453 (in Chinese with English abstract)
[3] Bansal M, Kaur S, Dhaliwal H S, Bains N S, Bariana H S, Chhuneja P, Bansal U K. Mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance loci in wheat. Plant Pathol, 2017, 66: 38–44
[4] McIntosh R A, Dubcovsky J, Rogers J, Morris C, Appels R, Xia X C. Catalogue of gene symbols for wheat: 2017 supplement, Komugi-wheat genetic resources database, http://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp, 2017.
[5] Herrera-Foessel S A, Singh R P, Lan C X, Huerta-Espino J, Calvo-Salazar V, Bansal U K, Bariana H S, Lagudah E S. Yr60, a gene conferring moderate resistance to stripe rust in wheat. Plant Dis, 2015, 99: 508–511
[6] Zhou X L, Han D J, Chen X M, Gou H L, Guo S J, Rong L, Wang Q L, Huang L L, Kang Z S. Characterization and molecular mapping of stripe rust resistance gene Yr61 in winter wheat cultivar Pindong 34. Theor Appl Genet, 2014, 127: 2349–2358
[7] 胡小平, 王保通, 康振生. 中国小麦条锈菌毒性变异研究进展. 麦类作物学报, 2014, 34: 709-716
Hu X P, Wang B T, Kang Z S. Research progress on virulence variation of Puccinia striiformis f. sp. tritici in China. J Triticeae Crops, 2014, 34: 709–716 (in Chinese with English abstract)
[8] Liu T G, Peng Y L, Chen W Q, Zhang Z Y. First detection of virulence in Puccinia striiformis f. sp. tritici in China to resistance genes Yr24 (=Yr26) present in wheat cultivar Chuanmai 42. Plant Dis, 94: 1163–1163
[9] 何中虎, 夏先春, 陈新民, 庄巧生.中国小麦育种进展与展望. 作物学报, 2011, 37: 202–215
He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011, 37: 202–215 (in Chinese with English abstract)
[10] Liu S Z, Yeh C T, Tang H M, Nettleton D, Schnable P S. Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One, 2012, 7: e36406
[11] Trick M, Adamski N M, Mugford S G, Jiang C C, Febrer M, Uauy C. Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol, 2012, 12: 14
[12] Ramirez Gonzalez R H, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, Jack P, Caccamo M, Uauy C. RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J, 2015, 13: 613–624
[13] McIntosh R A, Wellings C R, Park R F. Wheat Rusts: An Atlas of Rust Genes. East Melbourne, Australia: CSIRO Publication, 1995. pp 28–55
[14] Wang Z Z, Li H W, Zhang D Y, Guo L, Chen J J, Chen Y X, Wu Q H, Xie J Z, Zhang Y, Sun Q X, Dvorak J, Luo M C, Liu Z Y. Genetic and physical mapping of powdery mildew resistance gene MlHLT in Chinese wheat landrace Hulutou. Theor Appl Genet, 2015, 128: 365–373
[15] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley Mendelian inheritance, chromosomal location, and population-dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018
[16] Lincoln S, Daly M, Lander E. Constructing genetic maps with Mapmaker/eXP3.0 Whitehead Institute Tech Rep, 3rd edn. Whitehead Institute, Cambridge, 1992
[17] Ren R S, Wang M N, Chen X M, Zhang Z J. Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theor Appl Genet, 2012, 125: 847–857
[18] Li Z F, Zheng T C, He Z H, Li G Q, Xu S C, Li X P, Yang G Y, Singh R P, Xia X C. Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B. Theor Appl Genet, 2006, 112: 1098–1103
[19] Li Y, Niu Y C, Chen X M. Mapping a stripe rust resistance gene YrC591 in wheat variety C591 with SSR and AFLP markers. Theor Appl Genet, 2009, 112: 339–346
[20] 肖永贵, 殷贵鸿, 李慧慧, 夏先春, 阎俊, 郑天存, 吉万全, 何中虎. 小麦骨干亲本“周8425B”及其衍生品种的遗传解析和抗条锈病基因定位. 中国农业科学, 2011, 44: 3919–3929
Xiao Y G, Yin G H, Li H H, Xia X C, Yan J, Zheng T C, Ji W Q, He Z H. Genetic diversity and genome-wide association analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives. Sci Agric Sin, 2011, 44: 3919–3929 (in Chinese with English abstract)
[21] 王冬梅, 冯晶, 王凤涛, 蔺瑞明, 徐世昌. 2010-2011年度四省小麦区试品种遗传多样性和抗条锈性分析. 植物保护, 2013, 39(1): 21–28
Wang D M, Feng J, Wang F T, Lin R M, Xu S C. Molecular genetic diversity and stripe rust resistance of regional trial wheat cultivars in four provinces in 2010–2011. Plant Prot, 2013, 39(1): 21–28 (in Chinese with English abstract)
[22] Prins R, Marais G F. A genetic study of the gametocidal effect of the Lr19 translocation of common wheat. South Afr J Plant & Soil, 1999, 16: 10–14

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[5] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[6] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[7] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[8] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[9] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[10] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[11] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[12] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[13] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[14] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[15] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!