Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (11): 1650-1660.doi: 10.3724/SP.J.1006.2018.01650

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular Cloning, Location and Expression Analysis of Brasscia oleracea Zinc Finger Protein Transcription Factor BoC2H2

Shao-Lan LUO1,Xiao-Ping LIAN2,Min PU1,Xiao-Jing BAI1,Yu-Kui WANG1,Jing ZENG4,Song-Mei SHI3,He-Cui ZHANG1,Li-Quan ZHU1,*()   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400700, China
    2 College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400700, China
    3 College of Resources and Environmental Sciences, Southwest University, Chongqing 400700, China
    4 College of Life Science and Biotechnology, Yangtze Normal University, Chongqing 400718, China
  • Received:2018-02-12 Accepted:2018-07-20 Online:2018-11-12 Published:2018-07-30
  • Contact: Li-Quan ZHU E-mail:zhuliquan@swu.edu.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31572127);the Fundamental Research Fund of Southwest University(XDJK2017E073)

Abstract:

C2H2-type zinc finger protein family is one of the most important transcriptional regulator in plants, which it mainly involved in regulation plant growth and stress response. In this study, we screened and compared non-pollinated, self- or cross-pollinated 15, 30, and 60 min pistil transcriptome data, and isolated a gene with specifically up-regulated expression induced by self-pollination, named as BoC2H2. Molecular cloning indicated that BoC2H2 is a single exon gene, encoding a 251 amino acids protein. The protein molecular weight is 26.7 kDa and theoretical isoelectric point is 4.62. BoC2H2 contains a highly conserved ZnF_C2H2 domain. Physicochemical property analysis found BoC2H2 is a hydrophilic protein, not contains signal peptide and transmembrane domain. The 2000 bp upstream of BoC2H2 translation start codon contains light response, circadian rhythm, jasmonic acid response, defense and stress response cis acting elements and so on. The sub-cellular location of BoC2H2 in nuclear and cytoplasm were verified by transforming to Arabidopsis protoplast and tobacco. RT-PCR analysis indicated that BoC2H2 expressed in hypocotyls, leaves and flowers. The expression level of BoC2H2 in pistil changed with development stages and specifically decreased after flowering day. qRT-PCR analysis revealed that BoC2H2 mRNA expression level after self- and cross-pollination 0 min to 60 min were similar with RNA-seq data. In conclusion, BoC2H2 belongs to C2H2 type of zinc finger protein family and may involve in pistil-pollen stimulating molecular processes. Our founding is helpful to reveal the mechanism of BoC2H2 in Brassica oleracea self-incompatibility response and provide a clue for studying the function of C2H2 type of transcription factors in B. oleracea self-incompatibility response.

Key words: Brassica oleracea, C2H2-type zinc finger protein, BoC2H2, self-incompatibility, location, expression analysis

Table 1

Primers used for gene cloning and analysis by real-time PCR"

引物名称
Primer
引物序列
Primer sequence (5°-3°)
引物说明
Primer annotation
1300-GFP-F GAGAACACGGGGGACTCTAGAATGAGTGATCCCGAGAAAACAAAAG 基因的亚细胞定位
1300-GFP-R GCCCTTGCTCACCATGAGCTCCTCGGCTTTGTCCTCTTTTGC Subcellular localization
35S-R CCGATCTAGTAACATAGATGACACCG 通用引物 Universal primer
Gus-F CAAGCTTGGCTGCAGGTCGACTTCGACTCAGCGTGTTATG 基因的启动子活性分析
Gus-R GGTGGACTCCTCTTAGAATTCGATTTTGACTTTGTTGAGAG Promoter activity analysis
1391-F GAACTGATCGTTAAAACTGC 通用引物
1391-R TGGTCTTCTGAGACTGTATC Universal primer
RT-PCR-F GTGAACACTGAGGAAAGAATTAATG 荧光定量PCR引物
RT-PCR-R CAACCTCTTGTTCCATGTTGTC Primers for real-time PCR
Actin3-F GAGTAGAAAATGGCTGATGGTGAAG 扩增内参基因
Actin3-R TCATCTTCTCACGGTTAGCCTTTG For the internal control

Fig. 1

Expression pattern of BoC2H2 in stigma in response to self-pollination and cross-pollination"

Fig. 2

Amplification of BoC2H2gene from gDNA and cDNA of the stigma of Brassica oleracea M: DL2000; gDNA: products of BoC2H2 gene gDNA; cDNA: products of BoC2H2 gene cDNA."

Fig. 3

Nucleotide sequence of BoC2H2 and its amino acid sequence"

Fig. 4

Phylogenetic tree of BoC2H2 and C2H2 amino acid sequence in other species"

Table 2

cis-elements in the upstream regulation region of BoC2H2 gene"

相关功能预测Associated putative function 启动子顺式作用元件 cis-elements in the promoter region
Light responsive element CATT-motif, GAG-motif, Gap-box
Circadian control Circadian
Auxin-responsive element TGA-element
Gibberellin-responsive GARE-motif
Zein metabolism regulation O2-site
Meristem expression CAT-box
Endosperm expression GCN4_motif, Skn-1_motif
Defense and stress responsiveness TC-rich repeats
Elicitor-responsive element EIRE, ELI-box3
Essential for the anaerobic induction ARE
Promoter and enhancer regions CAAT-box
MeJA-responsiveness CGTCA-motif, TGACG-motif
Anoxic specific inducibility GC-motif
Low-temperature responsiveness LTR
MYB binding site involved in drought-inducibility MYB MBS
Core promoter element around -30 of transcription start TATA-box
Salicylic acid responsiveness TCA-element

Fig. 5

Subcellular location of BoC2H2-1300-GFP in epidermal cells of tobacco A: subcellular location of 1300-GFP vector; B: subcellular location of BoC2H2-1300-GFP; the arrows indicate the location of nucleus."

Fig. 6

Subcellular location of BoC2H2-1300-GFP in epidermal cells of Arabidopsis thaliana A: subcellular location of 1300-GFP vector; B: subcellular location ofBoC2H2-1300-GFP; the arrows indicate the location of nucleus."

Fig. 7

Expression analysis of BoC2H2 in different organs of Brassica oleracea"

Fig. 8

PCR analysis of transgenic plants1, 2, and 3 bands were BoC2H2-GUS and pCAMBIA 1391 transgenic plants, respectively. WT was wild-type Arabidopsis thaliana."

Fig. 9

GUS staining analysisa-b: seedlings at different developmental stages; c-f: leaves at different developmental stages; g-k: flowers at different developmental stages; l-m: pods at different developmental stages."

Fig. 10

Expression pattern of BoC2H2 in stigmas in response to self-pollination and cross-pollination"

[1] Ciftci-Yilmaz S, Mittler R . The zinc finger network of plants. Cell Mol Life Sci, 2008,65:1150-1160
doi: 10.1007/s00018-007-7473-4
[2] Miller G, Shulaev V, Mittler R . Reactive oxygen signaling and abiotic stress. Physiol Plant, 2008,133:481-489
doi: 10.1111/j.1399-3054.2008.01090.x pmid: 18346071
[3] Jiang L, Pan L J . Identification and expression of C2H2 transcription factor genes inCarica papaya under abiotic and biotic stresses. Mol Biol Rep, 2012,39:7105-7115
[4] Zhang H, Ni L, Liu Y P, Wang Y F, Zhang A, Tan M P, Jiang M Y . The C2H2-type zinc finger protein ZFP182 is involved in abscisic acid-induced antioxidant defense in rice. J Integr Plant Biol, 2012,54:500-510
doi: 10.1111/jipb.2012.54.issue-7
[5] Miller J , McLachlan A D, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA fromXenopus oocytes.EMBO J, 1985,4:1609-1614
[6] 黄骥, 王建飞, 张红生 . 植物 C2H2 型锌指蛋白的结构与功能. 遗传, 2004,26:414-418
doi: 10.3321/j.issn:0253-9772.2004.03.029
Huang J, Wang J F, Zhang H S . Structure and function of plant C2H2 zinc finger protein. Hereditas, 2004,26:414-418 (in Chinese with English abstract)
doi: 10.3321/j.issn:0253-9772.2004.03.029
[7] Berg J M, Shi Y G . The galvanization of biology: a growing appreciation for the roles of zinc. Science, 1996,271:1081-1085
doi: 10.1126/science.271.5252.1081 pmid: 8599083
[8] Moore M, Ullman C . Recent developments in the engineering of zinc finger proteins. Brief Funct Genomic Proteomic, 2003,1:342-355
doi: 10.1093/bfgp/1.4.342 pmid: 15239882
[9] Schumann U, Prestele J , O’Geen H, Brueggeman R, Wanner G, Gietl C. Requirement of the C3HC4 zinc RING finger of theArabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts. Proc Natl Acad Sci USA, 2007,104:1069-1074
[10] Nguyen X C, Kim S H, Lee K, Kim K E, Liu X M, Han H J, Hoang H T, Lee S W, Hong J C, Moon Y H, Chung W S . Identification of a C2H2-type zinc finger transcription factor (ZAT10) fromArabidopsis as a substrate of MAP kinase. Plant Cell Rep, 2012,31:737-745
[11] Bogamuwa S, Jang J C . The Arabidopsis tandem CCCH zinc finger proteins AtTZF4, 5 and 6 are involved in light-, abscisic acid- and gibberellic acid-mediated regulation of seed germination.Plant Cell Environ, 2013,36:1507-1519
[12] Zhou Z J, Sun L L, Zhao Y Q, An L J, Yan A, Meng X F, Gan Y B . Zinc Finger Protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling inArabidopsis thaliana.New Phytol, 2013,198:699-708
[13] Iuchi S . Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci, 2001,58:625-635
doi: 10.1007/PL00000885 pmid: 11361095
[14] Agarwal P, Arora R, Ray S, Singh A K, Singh V P, Takatsuji H, Kapoor S, Tyagi A K . Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol Biol, 2007,65:467-485
doi: 10.1007/s11103-007-9199-y
[15] Wu C Y, You C J, Li C, Li C S, Long T, Chen G X, Byrne M E, Zhang Q F . RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci USA, 2008,105:12915-12920
doi: 10.1073/pnas.0806019105
[16] Liu W X, Zhang F C, Zhang W Z, Song L F, Wu W H, Chen Y F . Arabidopsis Di19 functions as a transcription factor and modulates PR1, PR2, and PR5 expression in response to drought stress. Mol Plant, 2013,6:1487-1502
[17] Gao H S, Song A P, Zhu X R, Chen F D, Jiang J F, Chen Y, Sun Y, Shan H, Gu C S, Li P L, Chen S M . The heterologous expression in Arabidopsis of a chrysanthemum Cys2/His2 zinc finger protein gene confers salinity and drought tolerance. Planta, 2012,235:979-993
[18] Yang B, Jiang Y Q, Rahman M H, Deyholos M K, Kav N N . Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments. BMC Plant Biol, 2009,9:68
[19] He Y J, Mao S S, Gao Y L, Zhu L Y, Wu D M, Cui Y X, Li J N, Qian W . Genome-wide identification and expression analysis of WRKY transcription factors under multiple stresses inBrassica napus.PLoS One, 2016,11:e0157558
[20] 程影 . 芸薹属蔬菜耐盐基因 STZ 的克隆及生理性状分析. 南京农业大学硕士学位论文, 江苏南京, 2011
doi: 10.7666/d.Y2360507
Cheng Y . Cloning and Physiological Characterization of Salt Tolerance Gene STZ in Brassica. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2011 ( in Chinese with English abstract)
doi: 10.7666/d.Y2360507
[21] Devaiah B N, Nagarajan V K, Raghothama K G . Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol, 2007,145:147-159
[22] Mito T, Seki M, Shinozaki K, Takagi M O, Matsui K . Generation of chimeric repressors that confer salt tolerance in Arabidopsis and rice.Plant Biotechnol J, 2011,9:736-746
doi: 10.1111/j.1467-7652.2010.00578.x pmid: 21114612
[23] Zhang H, Liu Y P, Wen F, Yao D M, Wang L, Guo J, Ni L, Zhang A, Tan M P, Jiang M Y . A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice. J Exp Bot, 2014,65:5795-5809
doi: 10.1093/jxb/eru313
[24] 路小春 . 甘蓝型油菜编码WIPr锌指蛋白的TT1基因家族的克隆及在黄、黑籽之间的差异表达. 云南农业大学硕士学位论文, 云南昆明, 2006
Lu X C . Cloning and Differential Expression of TT1 Gene Family Encoding WIPr Zinc Finger Protein in Brassica napus L. MS Thesis of Yunnan Agricultural University, Kunming, Yunnan, China, 2006 ( in Chinese with English abstract)
[25] Qureshi M K, Sujeeth N, Gechev T S, Hille J . The zinc finger protein ZAT11 modulates paraquat-induced programmed cell death inArabidopsis thaliana.Acta Physiol Plant, 2013,35:1863-1871
[26] Khatun K, Nath U K , Robin A H K, Park J I, Lee D J, Kim M B, Kim C K, Lim K B, Nou I S, Chung M Y. Genome-wide analysis and expression profiling of zinc finger homeodomain (ZHD) family genes reveal likely roles in organ development and stress responses in tomato. BMC Genomics, 2017,18:695
doi: 10.1186/s12864-017-4082-y
[27] Wang W L, Wu P, Li Y, Hou X L . Genome-wide analysis and expression patterns of ZF-HD transcription factors under different developmental tissues and abiotic stresses in Chinesecabbage.Mol Genet Genomics, 2016,291:1451-1464
[28] 柳琼, 黄毅, 陶章生, 黄顺谋, 王新发, 黄邦全, 刘贵华 . 甘蓝型油菜TF III A型锌指蛋白基因鉴别和表达模式. 中国油料作物学报, 2014,36:562-571
Liu Q, Huang Y, Tao Z S, Huang S M, Wang X F, Huang B Q, Liu G H . Identification and expression pattern of TF III A zinc finger protein gene in Brassica napus L. Chin J Oil Crop Sci, 2014,36:562-571 (in Chinese with English abstract)
[29] Bowman J L, Sakai H, Jack T, Weigel D, Mayer U, Meyerowitz E M . SUPERMAN, a regulator of floral homeotic genes inArabidopsis. Development, 1992,114:599-615
doi: 10.1016/1043-4666(92)90051-R pmid: 1352237
[30] Kobayashi A, Sakamoto A, Kubo K, Rybka Z, Kanno Y, Takatsuji H . Seven zinc-finger transcription factors are expressed sequentially during the development of anthers in petunia. Plant J, 1998,13:571-576
doi: 10.1046/j.1365-313X.1998.00043.x
[31] 韩莹琰, 张爱红, 范双喜, 曹家树 . 十字花科植物C2H2 型锌指蛋白新基因 BcMF20 同源序列克隆与进化分析. 核农学报, 2011,25:916-921
Han Y Y, Zhang A H, Fan S X, Cao J S . Cloning and Evolutionary Analysis of BcMF20 homologous sequence of a novel C2H2 Zinc finger protein Gene in Cruciferae. J Nucl Agric Sci, 2011,25:916-921 (in Chinese with English abstract)
[32] Sakai H, Medrano L J, Meyerowitz E M . Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries.Nature, 1995,378:199-203
doi: 10.1038/378199a0 pmid: 7477325
[33] 马小艮, 于景印, 唐敏强, 张凤启, 董彩华, 童超波, 黄军艳, 刘胜毅 . 不同菌核病抗性甘蓝型油菜BnVRN2 基因的克隆与表达. 中国油料作物学报, 2015,37:735-743
Ma X G, Yu J Y, Tang M Q, Zhang F Q, Dong C H, Tong C P, Huang J Y, Liu S Y . Cloning and expression of BnVRN2 Gene of Brassica napus with different resistance to Sclerotinia sclerotiorum. Chin J Oil Crop Sci, 2015,37:735-743 (in Chinese with English abstract)
[34] Yao Q Y, Xia E H, Liu F H, Gao L H . Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata. Gene, 2015,557:35-42
[35] Kitashiba H, Liu P, Nishio T, Nasrallah J B, Nasrallah M E . Functional test of Brassica self-incompatibility modifiers in Arabidopsis thaliana .Proc Natl Acad Sci USA, 2011,108:18173-18178
[36] 蒲敏, 罗绍兰, 廉小平, 张贺翠, 白晓璟, 王玉奎, 左同鸿, 高启国, 任雪松, 朱利泉 . 自花授粉诱导的甘蓝功能基因BoSPI的克隆与表达分析. 作物学报, 2018,44:177-184
Pu M, Luo S L, Lian X P, Zhang H C, Bai X J, Wang Y K, Zuo T H, Gao Q G, Ren X S, Zhu L Q . Cloning and expression analysis of BoSPI induced by self-pollination in Brassica oleracea L. var. capitata. Acta Agron Sin, 2018,44:177-184 (in Chinese with English abstract)
[37] 刘兆明, 刘宗旨, 白庆武, 方荣祥 . Agroinfiltration 在植物分子生物学研究中的应用. 生物工程学报, 2002,18:411-414
doi: 10.3321/j.issn:1000-3061.2002.04.003
Liu Z M, Liu Z Z, Bai Q W, Fang R X . Application of Agroinfiltration in plant molecular biology. Chin J Biotechnol, 2002,18:411-414 (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-3061.2002.04.003
[38] Li Y, Geng Y F, Song H H, Zheng G Y, Huan L D, Qiu B S . Expression of a human lactoferrin N-lobe in Nicotiana benthmiana with potato virus X-based agroinfection.Biotechnol Lett, 2004,26:953-957
[39] Samuel M A, Chong Y T, Haasen K E , Aldea-Brydges M G, Stone S L, Goring D R. Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell, 2009,21:2655-2671
[40] Chandna R, Augustine R, Bisht N C . Evaluation of candidate reference genes for gene expression normalization inBrassica juncea using real time quantitative RT-PCR. PLoS One, 2012,7:e36918
[41] 贾双伟, 高英, 赵开军 . 芥菜锌指蛋白转录因子基因Bj26的克隆与鉴定. 作物学报, 2014,40:1174-1181
doi: 10.3724/SP.J.1006.2014.01174
Jia S W, Gao Y, Zhao K J . Cloning and characterization of Brassica juncea zinc finger protein transcription factor gene Bj26. Acta Agron Sin, 2014,40:1174-1181 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01174
[42] Ma X L, Liang W J, Gu P H, Huang Z J . Salt tolerance function of the novel C2H2-type zinc finger protein TaZNF in wheat. Plant Physiol Biochem, 2016,106:129-140
doi: 10.1016/j.plaphy.2016.04.033 pmid: 27156137
[43] Zhang D, Tong J, Xu Z, Wei P, Xu L, Wan Q, Huang Y, He X, Yang J, Sha H, Ma H . Soybean C2H2-type zinc finger protein GmZFP3 with conserved QALGGH motif negatively regulates drought responses in transgenic Arabidopsis. Front Plant Sci, 2016,7:325
[44] Han Y C, Fu C C, Kuang J F, Chen J Y, Lu W J . Two banana fruit ripening-related C2H2 zinc finger proteins are transcriptional repressors of ethylene biosynthetic genes. Postharvest Biol Technol, 2016,116:8-15
doi: 10.1016/j.postharvbio.2015.12.029
[45] Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K . The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis .Plant Cell, 2001,13:2191-2209
[46] Jiang J J, Jiang J X, Qiu L, Miao Y, Yao L, Cao J S . Identification of gene expression profile during fertilization in Brassica campestris subsp.chinensis. Genome, 2012,56:39-48
[47] Heslop-Harrison Y, Shivanna K R . The receptive surface of the angiosperm stigma. Ann Bot, 1977,41:1233-1258
doi: 10.1093/oxfordjournals.aob.a085414
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[3] ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168.
[4] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[5] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[6] WANG Yin, FENG Zhi-Wei, GE Chuan, ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, YAN Su-Xian, ZHENG Jun, ZHENG Xing-Wei. Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding [J]. Acta Agronomica Sinica, 2021, 47(8): 1511-1521.
[7] DUAN Ya-Mei, LUO Xian-Lei, CHEN Shi-Qiang, GAO Yong, CHEN Jian-Min, DAI Yi. Creation of disomic addition, substitution and translocation lines of durum wheat-Thinopyrum elongatum [J]. Acta Agronomica Sinica, 2021, 47(7): 1402-1414.
[8] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[9] ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113.
[10] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[11] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
[12] HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952.
[13] ZHANG Yi,XU Nai-Yin,GUO Li-Lei,YANG Zi-Guang,ZHANG Xiao-Qing,YANG Xiao-Ni. Optimization of test location number and replicate frequency in regional winter wheat variety trials in northern winter wheat region in China [J]. Acta Agronomica Sinica, 2020, 46(8): 1166-1173.
[14] LI Guo-Ji, ZHU Lin, CAO Jin-Shan, WANG You-Ning. Cloning and functional analysis of GmNRT1.2a and GmNRT1.2b in soybean [J]. Acta Agronomica Sinica, 2020, 46(7): 1025-1032.
[15] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!