Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (12): 1747-1754.doi: 10.3724/SP.J.1006.2018.01747

• SPECIAL SECTION: GRAIN DEHYDRATION AND MECHANICAL GRAIN HARVEST OF MAIZE • Previous Articles     Next Articles

Effects of Grain Moisture Content on Mechanical Grain Harvesting Quality of Summer Maize

Lu-Lu LI,Jun XUE,Rui-Zhi XIE,Ke-Ru WANG,Bo MING,Peng HOU,Shang GAO,Shao-Kun LI()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Beijing 100081, China
  • Received:2018-01-23 Accepted:2018-06-12 Online:2018-12-12 Published:2018-07-06
  • Contact: Shao-Kun LI E-mail:lishaokun@caas.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0300110);This study was supported by the National Key Research and Development Program of China(2016YFD0300101);the National Natural Science Foundation of China(31371575);the China Agriculture Research System(CARS-02-25);the Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences.

Abstract:

Broken grains, losing ears and grains always occur when maize is harvested by grain harvester, which is a hot topic. Studying grain mechanical harvesting quality and its affecting factors is of great significance for popularizing this technology, which provides a basis for finding out the best harvesting time and the direction of maize cultivar development. The experiments were conducted in Comprehensive Experiment Station of Chinese Academy of Agricultural Sciences located in Xinxiang city in 2015 and 2017. The dozens of popular cultivars grown in the Yellow-Huaihe-Haihe Rivers Plain summer maize region were harvested in different harvest times by a same grain combine harvester and a same driver. Indicators of grain moisture content, broken rate, impurity rate, grain loss rate and ear loss rate were measured to analyze their mutual relationships. With delaying harvest time, grain moisture content and impurity rate declined gradually, grain broken rate and grain loss rate decreased first and then increased, ear loss rate gradually rose. The grain moisture contents ranged from 9.68% to 41.36% in the two years. Its relationship with broken rate could be fitted by the equation y = 0.068x 2-2.743x+31.09 (R 2= 0.79 **, n = 140). Broken rate could be less than 5% when moisture content was 15.47%-24.78%. When moisture content was 20.05%, broken rate was the lowest. The relationship between impurity rate and moisture content could be fitted by the equation y = 0.0158e 0.1111 x(R 2= 0.66 **, n = 140). Impurity rate decreased first and then tended to be stable with falling moisture content. Grain loss rate and moisture content could be regressed in the equation y = 0.006x 2-0.236x+3.479 (R 2= 0.42 **, n = 127). Grain loss rate was the lowest when moisture content was 20.37%. Ear loss rate and moisture content could be regressed in the equation y = 2578.7645/x 2.2453 (R 2= 0.35 **, n = 140). Ear loss rate was more than 5% when moisture content was below 16.15%. We also found that harvesting qualities, especially broken rate, of different cultivars had significant differences while their grain moisture contents were the same. In conclusion, broken rate is the key factor that determined the quality of grain mechanical harvesting. The optimal grain moisture content interval of mechanical harvesting in Yellow-Huaihe-Haihe Rivers Plain summer maize region is 16.15%-24.78% at the standard of 5% broken rate and 5% ear loss rate. The harvesting quality would be the best when the moisture content is about 20%.

Key words: Maize, Mechanical grain harvesting, Harvesting quality, Broken rate, Impurity rate

Table 1

Experimental cultivars in 2015 and 2017"

年份
Year
品种个数
Number
品种
Cultivar
2015
11 中科玉505、裕丰303、联创808、农华816、宁玉721、京农科728、禾田1号、中单909、先玉335、郑单958、农华101
Zhongkeyu 505, Yufeng 303, Lianchuang 808, Nonghua 816, Ningyu 721, Jingnongke 728, Hetian 1, Zhongdan 909, Xianyu 335, Zhengdan 958, Nonghua 101
2017 28 中科玉505、裕丰303、联创808、农华816、辽单585、辽单586、辽单575、MC670、泽玉501、泽玉8911、吉单66、东单913、联创825、金通152、农华5号、恒育898、迪卡517、迪卡653、新单58、新单65、新单68、陕单636、陕单650、宇玉30、利单295、LA 505、北斗309、豫单9953
Zhongkeyu 505, Yufeng 303, Lianchuang 808, Nonghua 816, Liaodan 585, Liaodan 586, Liaodan 575, MC670, Zeyu 501, Zeyu 8911, Jidan 66, Dongdan 913, Lianchuang 825, Jintong 152, Nonghua 5, Hengyu 898, Dika 517, Dika 653, Xindan 58, Xindan 65, Xindan 68, Shaandan 636, Shaandan 650, Yuyu 30, Lidan 295, LA505, Beidou 309, Yudan 9953

Fig. 1

Maize grain moisture contents in different harvest dates The main box called IQR contains fifty percent samples in Box-whisker Plot. The two sidelines mean the reasonable sample border in Tukey method. The solid line in box positions the sample median. “·” Stands for the outlier. “+” Stands for the average."

Fig. 2

Broken rate and impurity rate of maize in different harvest dates in 2015 Figure notes are the same as those given in Fig. 1."

Fig. 3

Broken rate, impurity rate, grain loss rate and ear loss rate of maize in different harvest dates in 2017 Figure notes are the same as those given in Fig. 1."

Fig. 4

Relationships of grain moisture content with broken rate, impurity rate, grain loss rate, and ear loss rate in maize (2017)"

Table 2

Variance analysis of harvesting qualities of three maize groups with equally close moisture contents (2017)"

品种
Cultivar
指标
Indicator
收获时间 Harvest time (month/day)
10/6 10/16 10/27 11/10 11/25
迪卡653 Dika 653 含水率Moisture content (%) 38.04 33.93 27.08 19.22 12.49
辽单575 Liaodan 575 含水率Moisture content (%) 37.96 34.64 26.47 19.39 14.35
破碎率Broken rate ns ** ns ** *
杂质率Impurity rate ns ns ns ns ns
落粒率Grain loss rate * ns * *
落穗率Ear loss rate ns ns **
金通152 Jintong 152 含水率Moisture content (%) 37.13 32.46 25.66 22.70 12.69
陕单636 Shaandan 636 含水率Moisture content (%) 37.61 33.19 25.34 22.08 12.35
破碎率Broken rate ** * ** ns **
杂质率Impurity rate ns ** ns ns ns
落粒率Grain loss rate ns ns ns ns
落穗率Ear loss rate ns ns ns ns
泽玉501 Zeyu 501 含水率Moisture content (%) 36.89 33.93 27.47 19.13 13.17
中科玉505 Zhongkeyu 505 含水率Moisture content (%) 36.05 33.65 27.05 18.25 12.88
破碎率Broken rate * ns ** * *
杂质率Impurity rate ns ns * ns *
落粒率Grain loss rate ns ns ns ns ns
落穗率Ear loss rate ns ns ns

Table 3

Variance analysis of harvesting qualities between maize cultivars (2017)"

指标
Indicator
含水率区间 Moisture content interval
11.05%-
14.05%
14.05%-
17.05%
17.05%-
20.05%
20.05%-
23.05%
23.05%-
26.05%
26.05%-
29.05%
29.05%-
32.05%
32.05%-
35.05%
35.05%-
38.05%
总体
Total
破碎率Broken rate ** ** ** ** ** ** ** ** ** **
杂质率Impurity rate ns ns ns ** * ** ns * ns ns
落粒率Grain loss rate ** ** ns ns ** ** ns ns ns ns
落穗率Ear loss rate ** ** ns ** ns ** ns ns **
[1] 国家质量监督检验检疫总局和国家标准化委员会. 玉米收获机械技术条件. GB/T 21961-2008, 2008
People’s Republic of China National Standard. Technical Requirements for Maize Combine Harvester. GB/T 21961-2008, 2008 ( in Chinese)
[2] 国家质量监督检验检疫总局和国家标准化委员会. 玉米收获机械技术条件.GB/T 21962-2008, 2008
People’s Republic of China National Standard. Technical Requirements for Maize Combine Harvester. GB/T 21962-2008, 2008 (in Chinese)
[3] 国家质量监督检验检疫总局和国家标准化委员会. 玉米.GB1353-2009, 2009
People’s Republic of China National Standard. Maize. GB1353-2009,2009(in Chinese)
[4] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆 . 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017,50:2036-2043
doi: 10.3864/j.issn.0578-1752.2017.11.009
Chai Z W, Wang K R, Guo Y Q, Xie R Z, Li L L, Ming B, Hou P, Liu C W, Chu Z D, Zhang W X, Zhang G Q, Liu G Z, Li S K . Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Sci Agric Sin, 2017,50:2036-2043 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.11.009
[5] 李少昆, 王克如, 谢瑞芝, 李璐璐, 明博, 侯鹏, 初振东, 张万旭, 刘朝巍 . 玉米子粒机械收获破碎率研究. 作物杂志, 2017, ( 2):76-80
Li S K, Wang K R, Xie R Z, Li L L, Ming B, Hou P, Chu Z D, Zhang W X, Liu C W . Grain breakage rate of maize by mechanical harvesting in China. Crops, 2017, ( 2):76-80 (in Chinese with English abstract)
[6] 王克如, 李少昆 . 玉米机械粒收破碎率研究进展. 中国农业科学, 2017,50:2018-2026
doi: 10.3864/j.issn.0578-1752.2017.11.007
Wang K R, Li S K . Progresses in research on grain broken rate by mechanical grain harvesting. Sci Agric Sin, 2017,50:2018-2026 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.11.007
[7] 王克如, 李少昆 . 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017,50:2027-2035
doi: 10.3864/j.issn.0578-1752.2017.11.008
Wang K R, Li S K . Analysis of influencing factors on kernel dehydration rate of maize hybrids. Sci Agric Sin, 2017,50:2027-2035 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.11.008
[8] Waelti H, Buchele W F . Factors affecting corn kernel damage in combine cylinders. Trans ASAE, 1969,12:55-59
doi: 10.13031/2013.38762
[9] Johnson D Q, Russell W A . Genetic variability and relationships of physical grain-quality traits in the BSSS population of maize. Crop Sci, 1982,22:805-809
doi: 10.2135/cropsci1982.0011183X002200040025x
[10] 谢瑞芝, 雷晓鹏, 王克如, 郭银巧, 柴宗文, 侯鹏, 李少昆 . 黄淮海夏玉米籽粒机械收获研究初报. 作物杂志, 2014, ( 2):76-79
Xie R Z, Lei X P, Wang K R, Guo Y Q, Chai Z W, Hou P, Li S K . Research on corn mechanically harvesting grain quality in Huanghuaihai Plain. Crops, 2014, ( 2):76-79 (in Chinese with English abstract)
[11] 李璐璐, 雷晓鹏, 谢瑞芝, 王克如, 侯鹏, 张凤路, 李少昆 . 夏玉米机械粒收质量影响因素分析. 中国农业科学, 2017,50:2044-2051
Li L L, Lei X P, Xie R Z, Wang K R, Hou P, Zhang F L, Li S K . Analysis of influential factors on mechanical grain harvest quality of summer maize. Sci Agric Sin, 2017,50:2044-2051 (in Chinese with English abstract)
[12] Chowdhury M H, Buchele W F . The nature of corn kernel damage inflicted in the shelling crescent of grain combines. Int J Eng Model, 1978,21:610-614
[13] 曲宏杰 . 籽粒型玉米收获机适应性的试验与研究. 山东理工大学硕士学位论文,山东淄博, 2013
Qu H J . Experiment and Research on Adaptability of Grain Corn Harvester. MS Thesis of Shandong University of Technology, Zibo, Shandong,China, 2013 ( in Chinese with English abstract)
[14] 相茂国 . 玉米籽粒直收机械适应性研究. 山东理工大学硕士学位论文,山东淄博, 2014
Xiang M G . Study on the Adaptability of Corn Grain Harvesting Device. MS Thesis of Shandong University of Technology, Zibo, Shandong,China, 2014 (in Chinese with English abstract)
[15] 柳枫贺, 王克如, 李健, 王喜梅, 孙亚玲, 陈永生, 王玉华, 韩冬生, 李少昆 . 影响玉米机械收粒质量因素的分析. 作物杂志, 2013, ( 4):116-119
Liu F H, Wang K R, Li J, Wang X M, Sun Y L, Chen Y S, Wang Y H, Han D S, Li S K . Factors affecting corn mechanically harvesting grain quality. Crops, 2013, ( 4):116-119 (in Chinese with English abstract)
[16] Cloninger F D, Horrocks R D, Zuber M S . Effects of harvest date, plant density, and hybrid on corn grain quality. Agron J, 1975,67:693-695
doi: 10.2134/agronj1975.00021962006700050028x
[17] Huang H, Dan B F, Berger L L, Eckhoff S R . Harvest date influence on dry matter yield and moisture of corn and stover. Trans ASAE, 2012,55:593-598
doi: 10.13031/2013.41360
[18] Hall G E, Johnson W H . Corn kernel crackage induced by mechanical shelling. Trans ASAE, 1970,13:51-55
doi: 10.13031/2013.38533
[19] Plett S . Corn kernel breakage as a function of grain moisture at harvest in a prairie environment. Can J Plant Sci, 1994,74:543-544
doi: 10.1007/BF02849101
[20] 宋卫堂, 封俊, 胡鸿烈 . 北京地区夏玉米联合收获的试验研究. 农业机械学报, 2005,36(5):45-48
Song W T, Feng J, Hu H L . Experimental study on combine harvesting of summer corn in Beijing area. Trans CSAM, 2005,36(5):45-48 (in Chinese with English abstract)
[21] Waelti H . Physical Properties and Morphological Characteristics of Maize and Their Influence on Threshing Injury of Kernels. PhD Dissertation of Iowa State University, Iowa,America, 1967
doi: 10.1111/j.1467-9655.2010.01632_21.x
[22] 周旭 . 玉米种子脱粒损伤机理与低损伤脱粒原理研究. 沈阳农业大学硕士学位论文,辽宁沈阳, 2006
doi: 10.7666/d.y891736
Zhou X . Research the Damage Mechanism of Seed Com and Threshing Technology with Lower Damage. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning,China, 2006 (in Chinese with English abstract)
doi: 10.7666/d.y891736
[23] 李心平 . 种子玉米脱粒损伤机理及5TYZ-1型定向喂入式脱粒机研究. 沈阳农业大学博士学位论文,辽宁沈阳, 2007
doi: 10.7666/d.y1172042
Li X P . Study on Threshing Damage Mechanism of Seed Corn and Study on 5TYZ-1 Directional Feed Thresher. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning,China, 2007 (in Chinese with English abstract)
doi: 10.7666/d.y1172042
[24] 王克如, 李璐璐, 郭银巧, 范盼盼, 柴宗文, 侯鹏, 谢瑞芝, 李少昆 . 不同机械作业对玉米子粒收获质量的影响. 玉米科学, 2016,24(1):114-116
doi: 10.13597/j.cnki.maize.science.20160119
Wang K R, Li L L, Guo Y Q, Fan P P, Chai Z W, Hou P, Xie R Z, Li S K . Effects of different mechanical operation on maize grain harvest quality. J Maize Sci 2016,24(1):114-116 (in Chinese with English abstract)
doi: 10.13597/j.cnki.maize.science.20160119
[25] 任佰朝, 高飞, 魏玉君, 董树亭, 赵斌, 刘鹏, 张吉旺 . 冬小麦-夏玉米周年生产条件下夏玉米的适宜熟期与积温需求特性. 作物学报, 2018,44:137-143
Ren B Z, Gao F, Wei Y J, Dong S T, Zhao B, Liu P, Zhang J W . Suitable maturity period and accumulated temperature of summer maize in wheat-maize double cropping system. Acta Agron Sin, 2018,44:137-143 (in Chinese with English abstract)
[26] Martin C R, Converse H H, Czuchajowska Z, Lai F S, Pomeranz Y . Breakage susceptibility and hardness of corn kernels of various sizes and shapes. Appl Eng Agric, 1987,3:104-113
doi: 10.13031/2013.26655
[27] 杨引福, 李向拓, 谢恩魁 . 不同硬质度胚乳奥帕克-2(o2)玉米籽粒超微结构与品质性状的相关研究. 中国农业科学, 2005,38:59-63
doi: 10.3321/j.issn:0578-1752.2005.01.011
Yang Y F, Li X T, Xie E K . Correlation between ultra- microstructure and nutrition quality in opaque-2 corn kernels with different hardness endosperm. Sci Agric Sin, 2005,38:59-63 (in Chinese with English abstract)
doi: 10.3321/j.issn:0578-1752.2005.01.011
[28] 张锋伟, 赵武云, 韩正晟, 刘聚才, 杨小平, 戴飞 . 玉米籽粒力学性能试验分析. 中国农机化, 2010, ( 3):75-78
doi: 10.3969/j.issn.1006-7205.0000.00.020
Zhang F W, Zhao W Y, Han Z S, Liu J C, Yang X P, Dai F . Experimental researches on mechanical properties of corn kernels. Chin Agric Mech, 2010, ( 3):75-78 (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-7205.0000.00.020
[29] Jennings V M . Genotypic Variability in Grain Quality of Corn Zea mays L. PhD Dissertation of Iowa State University, Iowa,America, 1974
[30] 蔡超杰, 陈志, 韩增德, 刘贵明, 张宗玲, 郝俊发 . 种子玉米生物力学特性与脱粒性能的关系研究. 农机化研究, 2017,39(4):192-196
Cai C J, Chen Z, Han Z D, Liu G M, Zhang Z L, Hao J F . Study on relationship of biomechanical characteristics of corn seed and threshing performance. J Agric Mechanization Res, 2017,39(4):192-196 (in Chinese with English abstract)
[31] 李心平, 高连兴 . 种子玉米籽粒果柄断裂机理试验研究. 农业工程学报, 2007,23(11):47-51
Li X P, Gao L X . Experimental study on breaking mechanism of kernel stem of corn seed. Trans CSAE, 2007,23(11):47-51 (in Chinese with English abstract)
[32] 高连兴, 李飞, 张新伟, 张永丽, 刘新, 焦维鹏 . 含水率对种子玉米脱粒性能的影响机理. 农业机械学报, 2011,42(12):92-96
doi: 10.3969/j.issn.1000-1298.[year].[issue].[sequence]
Gao L X, Li F, Zhang X W, Zhang Y L, Liu X, Jiao W P . Mechanism of moisture content affect on corn seed threshing. Trans CSAM, 2011,42(12):92-96 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-1298.[year].[issue].[sequence]
[33] 刘赢 . 玉米果穗籽粒离散过程中籽粒间力学特性的研究. 河南科技大学硕士学位论文,河南洛阳, 2014
Liu Y . Experimental Research of Corn Ear Kernels for Mechanical Properties on the Discrete Process. MS Thesis of Henan University of Science and Technology, Luoyang, Henan,China, 2014 ( in Chinese with English abstract)
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[6] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[7] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[8] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[9] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[10] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[11] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[12] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[13] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[14] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[15] NIU Li, BAI Wen-Bo, LI Xia, DUAN Feng-Ying, HOU Peng, ZHAO Ru-Lang, WANG Yong-Hong, ZHAO Ming, LI Shao-Kun, SONG Ji-Qing, ZHOU Wen-Bin. Effects of plastic film mulching on leaf metabolic profiles of maize in the Loess Plateau with two planting densities [J]. Acta Agronomica Sinica, 2021, 47(8): 1551-1562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!