Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (8): 1169-1184.doi: 10.3724/SP.J.1006.2018.01169

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening and Comprehensive Evaluation of Germplasm Resources with Tribenuron-methyl Tolerance at Germination Stage in Rapeseed (Brassica napus L.)

Qian WANG(),Cui CUI(),Sang YE,Ming-Sheng CUI,Yu-Feng ZHAO,Na LIN,Zhang-Lin TANG,Jia-Na LI,Qing-Yuan ZHOU()   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
  • Received:2017-11-20 Accepted:2018-03-26 Online:2018-08-10 Published:2018-04-18
  • Contact: Qian WANG,Cui CUI,Qing-Yuan ZHOU E-mail:734747691@qq.com;cuigreeny@163.com;zhouqy2005@163.com
  • Supported by:
    the China Agriculture Research System(CARS-12);the National Key Technology Support Program of China(2013BAD01B03-12);the Science and Technology Committee of Chongqing(cstc2016shmszx0756);the Doctoral Start-up Fund of Southwestern University(swu113064)

Abstract:

The purpose of this study is to explore the characteristics of tribenuron-methyl tolerance in different genotypes of Brassica napus, and establish the evaluation system for screening and breeding new cultivars with tribenuron-methyl tolerance. The germination vigor was measured on the third day after treatment and the germination rate, shoot length, root length, dry weight, as well as fresh weight were measured on the seventh day. The identification of tolerance at germination stage was performed by tribenuron-methyl tolerance comprehensive evaluation value (T), average subordinative function value (ASF) and weight tribenuron-methyl tolerance coefficient (WTC) in correlation analysis, frequency analysis, principal component analysis, grey analysis, cluster analysis and stepwise regression analysis. Based on the variance analysis of relative root length index in 11 tested materials, we determined the optimum treatment concentration (25 mg kg -1) for selecting and evaluating the tolerant germplasm resources to tribenuron-methyl in napeseed. Under the optimum concentration, the single factor variance analysis showed significant differences in root length, shoot length, germination rate, germination vigor and fresh weight among 241 accessions of Brassica napus. The clustering analysis according to T value exhibited that the tested cultivars were roughly divided into five tribenuron-methyl tolerance grades, including three in grade I, 30 in grade II, 198 in grade III, six in grade IV, and four in grade V. We conclude that the varieties (lines) with strong tribenuron-methyl tolerance at germination stage are Xiwang 106, SWU95, and WH-33, which could be used as the germplasm materials for the study on tolerance breeding and mechanism. Furthermore, the root length, fresh weight and germination rate could be used as index traits to evaluate the tolerance of rapeseed germplasm resources during germination stage.

Key words: Brassica napus L, Tribenuron-methyl tolerance, germplasm resources, comprehensive evaluation, germination stage

Table 1

Significance analysis of root length relative values of 11 varieties at different concentrations (mean ±SE, %)"

品种(系)
Variety (line)
苯磺隆浓度 Concentration of tribenuron-methyl
0.25 mg kg-1 2.50 mg kg-1 25.00 mg kg-1 250.00 mg kg-1
炎81-2 Yan 81-2 70.3±0.007 c 17.8±0.015 de 10.4±0.003 f 10.3±0.003 de
SWU92 82.5±0.030 b 19.3±0.009 de 14.5±0.002 def 11.7±0.011 de
SWU101 64.5±0.077 cd 15.3±0.017 de 12.5±0.001 ef 9.3±0.012 e
782 48.5±0.003 e 18.5±0.004 de 13.5±0.006 ef 12.9±0.002 cde
509 50.0±0.008 e 19.8±0.021 de 15.4±0.004 cdef 14.5±0.009 bcde
P18 106.3±0.091 a 36.0±0.031 a 31.1±0.002 a 28.8±0.016 a
甲预31棚 Jiayu 31 peng 24.6±0.010 f 22.4±0.013 cd 19.6±0.029 bcd 15.8±0.006 bcde
苏油1号 Suyou 1 95.7±0.039 a 26.1±0.008 bc 23.8±0.012 b 20.0±0.004 bc
至尊 Zhizun 85.2±0.002 b 29.3±0.030 ab 22.3±0.001 bc 21.4±0.019 ab
B265 96.4±0.044 a 31.1±0.054 ab 18.5±0.011 bcde 18.0±0.006 bcd
中双12 Zhongshuang 12 60.1±0.010 d 13.3±0.017 e 13.2±0.038 ef 13.5±0.059 cde

Table 2

Changes of germination indices for 241 accessions of oilseed rape under tribenuron-methyl stress"

项目
Item
参数
Parameter
根长
RL (cm)
芽长
SL (cm)
发芽势
GV (%)
发芽率
GR (%)
鲜重
FW (g)
干重
DW (g)
对照
Control
最大值 Max. 13.13 5.81 100.00 100.00 0.79 0.08
最小值 Min. 0.55 0.76 10.00 15.00 0.08 0.01
均值 Average 7.38** 2.27** 81.31** 87.94** 0.38** 0.04**
标准差 SE 1.61 1.24 19.87 14.47 0.11 0.01
变异系数 CV (%) 21.77 54.56 24.44 16.45 28.91 26.74
胁迫
Stress
最大值 Max. 2.97 6.24 100.00 100.00 0.79 0.06
最小值 Min. 0.34 0.71 5.00 15.00 0.12 0.01
均值 Average 0.94** 2.37** 75.77** 83.22** 0.36** 0.04**
标准差 SE 0.38 1.30 21.47 16.66 0.10 0.01
变异系数 CV (%) 40.00 54.83 28.34 20.01 28.00 25.91
较对照变化 均值 Average -6.44 0.10 -5.54 -4.72 -0.02 0
Comparison with the control 变异系数 CV (%) 18.23 0.27 3.90 3.56 -0.91 -0.83

Fig. 1

Frequency distribution of tribenuron-methyl tolerance coefficients (TC) of different indexes in 241 Brassica napus RL: root length; SL: shoot length; GV: germination vigor; GR: germination rate; FW: fresh weight; DW: dry weight."

Table 3

Tribenuron-methyl tolerance coefficients of all indices in tested oilseed rape germplasms"

参数
Parameter
根长
RL
芽长 发芽势 发芽率 鲜重 干重
SL GV GR FW DW
最大值 Max. 0.588 2.005 1.000 1.000 2.357 1.946
最小值 Min. 0.050 0.494 0.143 0.333 0.411 0.333
均值 Average 0.136** 1.052** 0.926** 0.942** 0.980** 1.055
标准差 SE 0.066 0.187 0.123 0.097 0.202 0.136
变异系数 CV (%) 48.950 17.800 13.269 10.276 20.593 12.856

Table 4

Correlation coefficients among tribenuron-methyl tolerance coefficients of all indices in tested rape germplasms"

指标
Index
根长
RL
芽长
SL
鲜重
FW
发芽率
GR
发芽势
GV
干重
DW
RL 1
SL 0.046 1
FW 0.042 0.215** 1
GR -0.150* -0.059 -0.018 1
GV -0.171** 0.031 0.022 0.687** 1
DW -0.128* 0.031 0.062 0.133* 0.097 1

Table 5

Eigen values of all indices and their contributions and loading matrix of principal component"

主成分
Principal
component
特征值
Eigen
value
贡献率
Variance
contribution (%)
累计贡献率
Accumulated variance
contribution (%)
所测指标的特征向量值 Eigen vector of measured indicators
发芽率
GR
发芽势GV 鲜重
FW
根长
RL
芽长
SL
干重
DW
1 1.810 30.167 30.167 0.978 0.945 0.279 0.011 0.261 0.617
2 1.310 21.825 51.992 -0.358 -0.263 0.841 0.396 0.769 0.258
3 1.096 18.267 70.259 0.115 0.311 -0.263 0.904 0.195 -0.637
4 0.790 13.159 83.418 -0.044 -0.057 0.316 0.508 -0.755 0.323

Table 6

ASF value, WTC value, T value, and final rank of 241 accessions of rape germplasm resources under tribenuron-methyl stress"

编号
Code
ASF值 ASF value WTC值 WTC value T值 T value 综合排序
Final rank
数值Value 排序Order 数值Value 排序Order 数值Value 排序Order
1 0.55 35 0.55 30 0.28 73 40
2 0.46 167 0.53 67 -0.30 178 141
3 0.49 127 0.55 32 0.07 108 81
4 0.48 138 0.54 62 -0.16 154 124
5 0.44 192 0.50 164 -0.55 201 192
6 0.57 24 0.55 26 0.65 31 25
7 0.48 141 0.48 194 -0.29 177 175
8 0.42 213 0.46 208 -0.53 199 212
9 0.47 148 0.52 101 -0.29 176 148
10 0.54 49 0.55 33 0.55 35 35
11 0.47 147 0.52 114 -0.14 145 138
12 0.52 78 0.52 121 0.05 111 103
13 0.45 177 0.52 106 -0.62 207 165
14 0.51 84 0.53 84 0.23 80 74
15 0.42 206 0.52 100 -0.66 215 178
16 0.47 150 0.49 174 -0.01 121 153
17 0.47 154 0.50 145 -0.15 151 154
18 0.50 98 0.53 83 0.10 105 85
19 0.42 203 0.49 178 -0.72 218 209
20 0.50 110 0.52 99 0.13 98 100
21 0.45 184 0.50 144 -0.55 203 181
22 0.44 194 0.51 132 -0.52 198 179
23 0.44 196 0.48 183 -0.54 200 202
24 0.49 122 0.53 65 -0.14 146 116
25 0.46 164 0.50 163 -0.12 141 161
26 0.47 155 0.51 123 -0.30 179 158
27 0.40 218 0.46 212 -0.83 227 218
28 0.49 134 0.52 94 0.05 110 118
29 0.60 11 0.57 7 0.79 24 11
30 0.42 209 0.48 191 -0.60 206 210
31 0.52 68 0.54 57 0.02 118 70
32 0.53 58 0.52 98 0.22 81 67
33 0.59 14 0.56 13 0.96 15 12
34 0.48 143 0.52 104 -0.21 163 140
35 0.33 235 0.41 236 -1.28 234 235
36 0.16 241 0.36 241 -2.57 241 241
37 0.50 92 0.50 141 -0.01 119 123
38 0.25 238 0.38 238 -1.77 238 238
39 0.48 140 0.53 66 -0.10 138 122
40 0.47 157 0.54 49 -0.07 133 119
41 0.46 169 0.53 82 -0.43 191 152
42 0.50 107 0.53 63 0.03 116 86
43 0.41 215 0.49 166 -0.57 204 206
编号
Code
ASF值 ASF value WTC值 WTC value T值 T value 综合排序
Final rank
数值Value 排序Order 数值Value 排序Order 数值Value 排序Order
44 0.46 162 0.50 147 -0.13 143 156
45 0.44 197 0.49 175 -0.39 186 194
46 0.49 120 0.54 47 -0.02 122 87
47 0.39 223 0.45 223 -0.74 219 223
48 0.51 89 0.54 40 0.35 64 54
49 0.54 43 0.53 81 0.35 63 52
50 0.53 52 0.55 25 0.21 82 46
51 0.42 204 0.47 206 -0.36 185 208
52 0.64 5 0.57 9 1.13 6 5
53 0.50 106 0.50 156 -0.07 135 134
54 0.50 108 0.51 137 0.36 60 99
55 0.44 187 0.48 186 -0.31 181 191
56 0.46 163 0.49 167 -0.17 157 164
57 0.45 182 0.47 197 -0.24 167 189
58 0.50 103 0.54 58 -0.15 152 106
59 0.46 168 0.48 185 -0.31 180 183
60 0.54 50 0.55 27 0.46 46 37
61 0.47 160 0.53 75 -0.33 182 144
62 0.51 83 0.53 86 0.33 67 66
63 0.32 236 0.42 235 -1.41 236 236
64 0.53 60 0.54 55 0.20 86 58
65 0.54 46 0.54 52 0.53 39 39
66 0.55 34 0.56 14 0.53 38 26
67 0.49 124 0.53 89 -0.27 172 131
68 0.50 104 0.53 73 -0.11 140 107
69 0.45 175 0.52 105 -0.39 188 162
70 0.52 71 0.52 102 0.18 88 78
71 0.39 222 0.44 224 -0.81 225 225
72 0.57 21 0.54 42 1.00 12 20
73 0.29 237 0.41 237 -1.47 237 237
74 0.53 51 0.54 38 0.13 99 53
75 0.45 174 0.54 61 -0.26 169 136
76 0.52 69 0.50 142 0.04 114 112
77 0.51 85 0.51 133 0.12 100 109
78 0.45 173 0.49 181 -0.17 155 172
79 0.52 72 0.52 118 0.16 92 84
80 0.40 219 0.45 222 -0.77 223 221
81 0.37 228 0.42 234 -0.75 221 229
82 0.54 42 0.51 124 0.11 101 82
83 0.42 211 0.47 198 -0.64 212 213
84 0.47 152 0.50 152 0.02 117 147
85 0.49 133 0.50 158 -0.08 136 150
86 0.45 179 0.45 215 -0.10 137 182
87 0.21 239 0.38 239 -1.99 239 239
88 0.56 31 0.54 59 0.44 48 41
89 0.53 63 0.52 96 0.52 40 57
90 0.45 172 0.49 169 -0.15 149 166
91 0.43 202 0.46 209 -0.22 164 201
92 0.50 101 0.53 74 0.32 69 73
93 0.51 90 0.51 139 0.35 61 89
94 0.52 77 0.56 22 0.42 55 45
95 0.47 156 0.49 165 -0.13 144 160
96 0.55 33 0.56 16 0.43 49 31
97 0.52 75 0.53 70 0.04 115 77
98 0.53 54 0.53 76 0.54 37 47
99 0.50 102 0.54 45 0.15 96 71
100 0.38 226 0.45 219 -0.92 231 227
101 0.45 171 0.50 161 -0.43 192 180
102 0.57 25 0.53 72 0.90 17 34
103 0.45 176 0.51 131 -0.35 183 167
104 0.53 62 0.50 143 0.15 95 95
105 0.42 212 0.47 205 -0.68 216 216
106 0.55 36 0.52 110 0.76 26 48
107 0.59 13 0.56 15 0.97 14 13
108 0.50 93 0.53 79 -0.15 150 111
109 0.54 44 0.54 53 0.43 50 44
110 0.51 88 0.51 136 0.20 83 101
111 0.48 137 0.50 148 -0.04 127 142
112 0.49 119 0.54 60 -0.04 129 102
113 0.52 79 0.50 159 0.37 59 91
114 0.52 80 0.53 64 0.20 84 64
115 0.49 125 0.52 97 0.27 75 92
116 0.49 131 0.51 127 -0.19 162 146
117 0.52 74 0.53 85 0.40 57 61
118 0.47 151 0.52 92 -0.16 153 133
119 0.49 121 0.52 117 -0.01 120 127
120 0.45 180 0.49 180 -0.51 197 193
121 0.50 99 0.52 95 0.08 107 96
122 0.42 207 0.47 201 -0.65 213 214
122 0.42 207 0.47 201 -0.65 213 214
123 0.38 225 0.43 227 -0.62 208 219
124 0.47 159 0.50 155 -0.40 189 171
125 0.44 190 0.46 207 -0.19 161 195
126 0.53 65 0.51 140 0.42 54 75
127 0.44 189 0.48 190 -0.63 209 207
128 0.51 87 0.52 109 -0.05 131 114
129 0.39 221 0.44 225 -0.77 224 224
130 0.42 208 0.51 135 -0.44 193 185
131 0.42 210 0.49 176 -0.17 156 188
132 0.40 217 0.46 210 -0.76 222 217
133 0.61 7 0.56 21 0.97 13 10
134 0.54 47 0.54 51 0.51 42 42
135 0.43 200 0.48 195 -0.36 184 203
136 0.41 214 0.45 220 -0.90 230 222
137 0.42 205 0.48 192 -0.71 217 211
138 0.50 111 0.53 88 0.10 102 97
139 0.50 94 0.54 56 -0.11 139 88
140 0.51 82 0.55 34 0.17 91 59
141 0.49 126 0.52 103 0.13 97 113
142 0.58 19 0.55 24 0.72 27 17
143 0.49 123 0.51 128 -0.04 128 129
144 0.50 109 0.53 87 -0.04 125 110
145 0.47 146 0.52 112 -0.17 159 145
146 0.55 39 0.57 10 0.80 22 18
147 0.44 198 0.49 182 -0.55 202 204
148 0.55 37 0.56 17 0.52 41 30
149 0.39 220 0.44 226 -0.81 226 226
150 0.49 129 0.52 116 -0.25 168 143
151 0.50 96 0.50 153 0.08 106 125
152 0.49 132 0.50 162 -0.07 134 151
153 0.50 113 0.52 120 0.07 109 120
154 0.49 130 0.50 154 -0.24 166 155
155 0.43 201 0.45 217 -0.65 214 215
156 0.49 128 0.52 119 0.17 90 117
157 0.59 16 0.57 6 0.66 30 15
158 0.57 20 0.56 23 0.60 33 22
159 0.56 26 0.56 20 0.40 58 32
160 0.50 95 0.54 39 0.10 103 68
161 0.45 183 0.48 184 -0.45 194 198
162 0.63 6 0.56 11 1.25 5 6
163 0.44 195 0.50 149 -0.46 195 187
164 0.56 28 0.55 29 0.89 18 21
165 0.49 117 0.46 211 0.71 28 126
166 0.35 232 0.42 230 -1.29 235 233
167 0.46 170 0.51 130 -0.49 196 170
168 0.49 135 0.53 69 -0.04 126 115
169 0.59 12 0.57 8 0.83 20 9
170 0.53 56 0.54 50 0.30 70 49
171 0.50 114 0.50 150 0.23 79 121
172 0.47 158 0.53 77 -0.26 170 137
173 0.52 73 0.49 173 0.35 65 104
174 0.53 64 0.54 43 0.30 71 50
175 0.51 81 0.51 129 0.43 51 79
176 0.58 18 0.57 5 0.54 36 16
177 0.53 55 0.55 36 0.15 94 51
178 0.49 115 0.52 93 0.10 104 105
179 0.44 191 0.52 108 -0.64 211 173
180 0.68 1 0.58 4 2.16 2 2
181 0.52 66 0.52 107 0.41 56 65
182 0.57 23 0.55 31 0.79 23 23
183 0.52 70 0.51 125 0.32 68 80
184 0.44 193 0.47 200 -0.12 142 184
185 0.68 2 0.60 2 1.12 7 4
186 0.53 53 0.51 126 0.93 16 55
187 0.48 142 0.49 171 -0.26 171 163
188 0.54 45 0.49 179 0.86 19 72
189 0.48 139 0.48 187 -0.05 130 157
190 0.37 229 0.45 221 -1.19 233 230
191 0.17 240 0.37 240 -2.14 240 240
192 0.53 61 0.52 115 0.46 45 63
193 0.38 224 0.43 229 -0.63 210 220
194 0.41 216 0.45 218 -0.14 148 205
195 0.48 145 0.53 78 0.28 74 93
196 0.44 186 0.47 202 -0.28 173 199
197 0.51 86 0.48 188 0.51 43 108
198 0.49 118 0.50 157 0.04 112 132
199 0.67 3 0.62 1 2.21 1 1
200 0.46 165 0.46 213 -0.28 175 190
201 0.50 97 0.52 91 0.18 89 83
202 0.45 178 0.48 193 -0.39 187 196
203 0.60 9 0.56 18 1.03 10 8
204 0.60 8 0.53 68 1.34 4 24
205 0.46 161 0.49 177 -0.28 174 176
206 0.36 230 0.42 233 -0.89 229 232
207 0.59 15 0.56 12 1.04 9 7
208 0.56 30 0.55 37 0.82 21 27
209 0.45 185 0.45 216 -0.23 165 200
210 0.49 116 0.50 146 -0.14 147 139
211 0.59 17 0.56 19 1.01 11 14
212 0.47 149 0.47 203 -0.17 158 174
213 0.47 153 0.46 214 -0.02 123 168
214 0.56 29 0.55 28 0.56 34 28
215 0.67 4 0.60 3 1.85 3 3
216 0.43 199 0.47 199 -0.19 160 197
217 0.36 231 0.43 228 -0.75 220 228
218 0.52 67 0.52 90 0.20 85 69
219 0.50 105 0.51 122 0.29 72 94
220 0.45 181 0.49 168 0.26 76 149
221 0.54 48 0.54 44 0.43 52 43
222 0.50 112 0.49 172 0.24 78 128
223 0.57 22 0.54 46 0.79 25 29
224 0.56 27 0.54 48 0.67 29 33
225 0.50 91 0.51 138 0.35 66 90
226 0.48 136 0.50 151 0.04 113 135
227 0.55 40 0.52 111 0.35 62 60
228 0.48 144 0.48 189 -0.03 124 159
229 0.60 10 0.54 54 1.07 8 19
230 0.52 76 0.51 134 0.16 93 98
231 0.46 166 0.48 196 -0.06 132 169
232 0.44 188 0.50 160 -0.41 190 186
233 0.50 100 0.47 204 0.25 77 130
234 0.53 57 0.49 170 0.63 32 76
235 0.37 227 0.42 231 -0.87 228 231
236 0.55 38 0.55 35 0.48 44 36
237 0.55 32 0.52 113 0.42 53 56
238 0.54 41 0.54 41 0.44 47 38
239 0.53 59 0.53 71 0.19 87 62
240 0.33 234 0.53 80 -0.57 205 177
241 0.34 233 0.42 232 -1.18 232 234

Table 7

Correlation degree between TC value of all indices and T value together with WTC value and indices weight in tested oilseed rape germplasms"

指标
Index
等权关联度γT 权重系数
ωi
加权关联度γWTC
数值 Value 排序 Order 数值 Value 排序 Order
发芽率 GR 0.649 3 0.163 0.669 5
发芽势 GV 0.634 4 0.159 0.671 4
鲜重 FW 0.658 2 0.165 0.745 2
干重 DW 0.633 5 0.159 0.615 6
根长 RL 0.781 1 0.196 0.763 1
芽长 SL 0.630 6 0.158 0.673 3

Table 8

Classification of tribenuron-methyl tolerance evaluation indices in rape germplasm resources"

指标
Index
隶属函数值 Subordinate function value
I II III V IV
发芽率 GR 0.94 0.94 0.93 0.84 0.48
发芽势 GV 0.98 0.96 0.92 0.83 0.43
鲜重 FW 0.71 0.28 0.21 0.16 0.15
干重 DW 0.50 0.43 0.41 0.35 0.22
根长 RL 0.44 0.29 0.15 0.11 0.09
芽长 SL 0.40 0.47 0.40 0.32 0.28
ASF值 ASF value 0.67 0.57 0.50 0.43 0.28
WTC值 WTC value 0.60 0.54 0.52 0.48 0.40
T值 T value 2.08 0.77 0.12 -0.47 -1.63

Table 9

Model predict of tribenuron-methyl tolerance in rape"

因变量
Dependent variable
多元逐步回归方程
Multiple stepwise regression equation
相关系数
r
F
F-value
P
P-value
ASF值 ASF value y = -0.4505+0.6436x1+0.1260x3+0.4108x5+0.1421x6 0.9555 620 0.0001
WTC值 WTC value y = -0.0506+0.2568x1+0.1867x2+0.3401x3-0.0606x4+0.0910x5+0.0320x6 0.9578 433 0.0001
T值 T value y = -6.5511+4.5564x1+1.5790x3+5.2021x5 0.9247 466 0.0001
[1] 张朝贤, 胡祥恩, 钱益新 . 国外除草剂应用趋势及我国杂草科学研究现状和发展方向. 植物保护学报, 1997,24:278-282
Zhang C X, Hu X E, Qian Y X . Trend of herbicides use in developed countries and current research and future directions in weed science research in China. J Plant Prot, 1997,24:278-282 (in Chinese with English abstract)
[2] 张朝贤, 倪汉文, 魏守辉, 黄红娟, 刘延, 崔海兰, 隋标峰, 张猛, 郭峰 . 杂草抗药性研究进展. 中国农业科学, 2009,42:1274-1289
Zhang C X, Ni H W, Wei S H, Huang H J, Liu Y, Cui H L, Sui B F, Zhang M, Guo F . Current advances in research on herbicide resistance. Sci Agric Sin, 2009,42:1274-1289 (in Chinese with English abstract)
[3] 吴春华, 陈欣 . 农药对农区生物多样性的影响. 应用生态学报, 2004,15:341-344
Wu C H, Chen X . Impact of pesticides on biodiversity in agricultural areas. Chin J Appl Ecol, 2004,15:341-344 (in Chinese with English abstract)
[4] 单正军, 陈祖义 . 除草剂对非靶植物(农作物)的危害影响及控制技术. 农药科学与管理, 2007,28(9):50-54
doi: 10.3969/j.issn.1002-5480.2007.09.017
Shan Z J, Chen Z Y . Harm and control technology of herbicides to non target plants (crops). Pestic Sci Admin, 2007,28(9):50-54 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-5480.2007.09.017
[5] Brighenti A M, Moraes V J, Oliveira Jr R S, Gazziero D L P, Voll E, Gomes J A . Persistência e fitotoxicidade do herbicida atrazine aplicado na cultura do milho sobre a cultura do girassol em sucessão. Planta Daninha, 2002,20:291-297
doi: 10.1590/S0100-83582002000200016
[6] 林长福 . 玉米田化学除草现状及发展趋势. 农药, 1999, ( 9):3-4
Lin C F . Present situation and development trend of chemical weed control in maize field. Agrochemicals, 1999, ( 9):3-4 (in Chinese with English abstract)
[7] 王汉中 . 我国油菜产需形势分析及产业发展对策. 中国油料作物学报, 2007,29:101-105
Wang H Z . Strategy for rapeseed industry development based on the analysis of rapeseed production and demand in China. Chin J Oil Crop Sci, 2007,29:101-105 (in Chinese with English abstract)
[8] Zhou W J, Yoneyama K, Takeuchi Y, Iso S, Rungmekarat S, Chae S H, Sato D, Joel D M . In vitro infection of host roots by differentiated calli of the parasitic plant orobanche. J Exp Bot, 2004,55:899-907
doi: 10.1093/jxb/erh098
[9] Song W J, Zhou W J, Jin Z L, Gao D D, Joel D M, Takeuchi Y, Yoneyama K . Germination response of Orobanche seeds subjected to conditioning temperature, water potential and growth regulator treatments. Weed Res, 2005,45:467-476
doi: 10.1111/wre.2005.45.issue-6
[10] 俞琦英, 周伟军 . 油菜田的杂草发生特点及其防治研究概况. 浙江农业科学, 2010, ( 1):123-127
doi: 10.3969/j.issn.0528-9017.2010.01.048
Yu Q Y, Zhou W J . Study on weed occurrence characteristics and control in rape field. J Zhejiang Agric Sci, 2010, ( 1):123-127 (in Chinese)
doi: 10.3969/j.issn.0528-9017.2010.01.048
[11] 张宏军, 贾富勤, 张佳, 李晓晶 . 杂草对灭生性除草剂百草枯的抗性问题. 农药科学管理, 2003,24(12):26-29
doi: 10.3969/j.issn.1002-5480.2003.12.013
Zhang H J, Jia F L, Zhang J, Li X J . The resistant weeds of no selective herbicide-paraquat. Pestic Sci Admini, 2003,24(12):26-29 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-5480.2003.12.013
[12] 张宏军, 刘学, 张佳, 崔海兰, 张朝贤, 朱文达 . 我国油菜田除草剂登记和使用情况. 科技创新导报, 2008, ( 15):252-253
doi: 10.3969/j.issn.1674-098X.2008.15.201
Zhang H J, Liu X, Zhang J, Cui H L, Zhang C X, Zhu W D . Herbicide registration and usage in rape fields in China. Sci Technol Innov Herald, 2008, ( 15):252-253 (in Chinese)
doi: 10.3969/j.issn.1674-098X.2008.15.201
[13] 孙妍妍, 曲高平, 黄谦心, 吕金洋, 郭媛, 胡胜武 . 甘蓝型油菜耐苯磺隆突变体ALS基因分析与SNP标记. 中国油料作物学报, 2015,37:589-595
Sun Y Y, Qu G P, Huang Q X, Lyu J Y, Guo Y, Hu S W . SNP markers for acetolactate synthase genes from tribenuron-methyl resistant mutants in Brassica napus L. Chin J Oil Crop Sci, 2015,37:589-595 (in Chinese with English abstract)
[14] 信晓阳, 曲高平, 张荣, 庞红喜, 吴强, 王发禄, 胡胜武 . 不同品种油菜对苯磺隆耐药性差异的鉴定. 西北农业学报, 2014,23(7):68-74
doi: 10.7606/j.issn.1004-1389.2014.07.012
Xin X Y, Qu G P, Zhang R, Pang H X, Wu Q, Wang F L, Hu S W . Identification of the tribenuron-methyl tolerance in different rapeseed genotypes. Acta Agric Boreali-Occident Sin, 2014,23(7):68-74 (in Chinese with English abstract)
doi: 10.7606/j.issn.1004-1389.2014.07.012
[15] Yu C, Hu S, He P, Sun G, Zhang C, Yu Y . Inducing male sterility in Brassica napus L. by a sulphonylurea herbicide, tribenuron-methyl. Plant Breed, 2006,125:61-64
doi: 10.1111/j.1439-0523.2006.01180.x
[16] Li H, Li J, Zhao B, Wang J, Yi L, Liu C, Wu J, King G J, Liu K . Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility. Theor Appl Genet, 2015,128:107-118
[17] 吴学莉, 易丽聪, 侯凡, 吴江生, 姚璇, 刘克德 . 表达播娘蒿突变基因DsALS-108的抗苯磺隆甘蓝型油菜植株构建. 农业生物技术学报, 2016,24:469-477
doi: 10.3969/j.issn.1674-7968.2016.04.001
Wu X L, Yi L C, Hou F, Wu J S, Yao X, Liu K D . Generation of tribenuron-methyl herbicide resistant rapeseed (Brasscia napus) plants expressing mutated gene DsALS-108 of flixweed(Descurainia sophia). J Agric Biotechnol, 2016,24:469-477 (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7968.2016.04.001
[18] 曲高平, 孙妍妍, 庞红喜, 吴强, 王发禄, 胡胜武 . 甘蓝型油菜EMS突变体库构建及抗除草剂突变体筛选. 中国油料作物学报, 2014,36:25-31
doi: 10.7505/j.issn.1007-9084.2014.01.004
Qu G P, Sun Y Y, Pang H X, Wu Q, Wang F L, Hu S W . Ems mutagenesis and als-inhibitor herbicide-resistant mutants of Brassica napus L. Chin J Oil Crop Sci, 2014,36:25-31 (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2014.01.004
[19] 汪亚琴 . 水稻抗除草剂基因CYP81A6转化油菜的研究. 华中农业大学硕士学位论文, 湖北武汉, 2013
Wang Y Q . The Expression of Rice Herbicide Resistance Gene CYP81A6 in Brassica napus. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2013 ( in Chinese with English abstract)
[20] 邱芳心, 杜桂萍, 刘开林, 毛爱星, 罗坤 . 杂草抗药性及其治理策略研究进展. 杂草科学, 2015, ( 2):1-6
doi: 10.3969/j.issn.1003-935X.2015.02.001
Qiu F X, Du G P, Liu K L, Mao A X, Luo K . Research progress on weed resistance to herbicides and control methods. Weed Sci, 2015, ( 2):1-6 (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-935X.2015.02.001
[21] 信晓阳 . 油菜苯磺隆抗性研究与转基因抗除草剂油菜的选育. 西北农林科技大学硕士学位论文, 陕西西安, 2013
Xin X Y . Charaterization of Resistance to Tribenuron-Methyl in Rapeseed (Brassica napus L.) and Development of Transgenic Rapeseed with Herbericide-Resistance. MS Thesis of Northwest A&F University, Xi’an, Shaanxi, China, 2013 ( in Chinese with English abstract)
[22] Koger C H, Poston D H, Hayes R M, Montgomery R F . Glyphosate-resistant horseweed (Conyza canadensis) in Mississippi. Weed Technol, 2004,189:820-825
[23] Kuk Y I, Kim K H, Kwon O D, Lee D J, Burgos N R, Jung S, Guh J O . Cross-resistance pattern and alternative herbicides for Cyperus difformis resistant to sulfonylurea herbicides in Korea. Pest Manage Sci, 2004,60:85-94
doi: 10.1002/(ISSN)1526-4998
[24] 刘伟, 王金信, 杨广玲, 毕建杰, 隋标峰 . 不同小麦品种对苯磺隆耐药性差异及其机理. 植物保护学报, 2005,32:300-304
Liu W, Wang J X, Yang G L, Bi J J, Sui B F . Different of tolerance and mechanism of various wheat varieties to tribenuron-methyl. Acta Phytophy Sin, 2005,32:300-304 (in Chinese with English abstract)
[25] Heap I M . International survey of herbicide-resistant weeds. Weed Technol, 1990,4(1):220
doi: 10.1017/S0890037X00025252
[26] Deng W, Yang Q, Jiao H T, Zhang Y Z, Li X F, Zhang M Q . Cross-resistance pattern to four AHAS-inhibiting herbicides of tribenuron-methyl-resistant flixweed (Descurainia sophia) conferred by Asp-376-Glu mutation in AHAS. J Integr Agric, 2016,15:2563-2570
[27] Sun J, Wang J X, Zhang H J, Liu J L, Bian S N . Study on mutations in ALS for resistance to tribenuron-methyl in Galium aparine L. Agric Sci Chin, 2011,10:86-91
[28] Cumminsa I, Wortleyb David J, Sabbadin F, Heb Z, Coxona C R, Strakera H E, Sellarsa J D, Knighta K, Edwardsc L, Hughesd D, Kaundund S S, Hutchingsd S J, Steela P G, Edwardsb R . Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proc Natl Acad Sci USA, 2013,110:5812-5817
doi: 10.1073/pnas.1221179110 pmid: 23530204
[29] 商璐 . 抗草甘膦大豆种质挖掘及抗性机制研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2016
Shang L . Study on Screening and Resistant Mechanism of Germplasm Resources to Glyphosate-Resistance in Soybean. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2016 (in Chinese with English abstract)
[30] Kotoula-Syka E, Eleftherohorinos I G, Gagianas A A, Sficas A G . Phytotoxicity and persistence of chlorsulfuron, metsulfuron- methyl, triasulfuron and tribenuron-methyl in three soils. Weed Res, 2010,33:355-367
[31] 邹月利, 陶波 . 磺酰脲类除草剂的降解机制及代谢产物的研究进展. 农药科学与管理, 2011,32(10):24-31
Zou Y L, Tao B . Research advance on the degradation mechanism and degradation products of sulfonylurea herbicides. Pestic Sci Admini, 2011,32(10):24-31 (in Chinese with English abstract)
[32] 王正贵 . 除草剂对小麦产量和品质的影响及其残留特性. 扬州大学博士学位论文, 江苏扬州, 2011
doi: 10.7666/d.y2050365
Wang Z G . Effects of Herbicides on Grain Yield and Quality in Wheat and Relevant Residual Behavior. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2011 ( in Chinese with English abstract)
doi: 10.7666/d.y2050365
[33] 江改青 . 小麦和土壤中苯磺隆与氯氟吡氧乙酸残留分析方法及消解动态研究. 安徽农业大学硕士学位论文, 安徽合肥, 2009
doi: 10.7666/d.y1597372
Jiang G Q . Study on Analytical Mechods and Dynamics of Tribenuron-methyI and Fluroxypyr Residues in Wheat and Soil. MS Thesis of Anhui Agricultural University, Hefei, Hanhui, China, 2009 ( in Chinese with English abstract)
doi: 10.7666/d.y1597372
[34] 陈新, 张宗文, 吴斌 . 裸燕麦萌发期耐盐性综合评价与耐盐种质筛选. 中国农业科学, 2014,47:2038-2046
Chen X, Zhang Z W, Wu B . Comprehensive evaluation of salt tolerance and screening for salt tolerant accessions of naked oat (Avena nuda L.) at germination stage. Sci Agric Sin, 2014,47:2038-2046 (in Chinese with English abstract)
[35] 汪梦竹, 慕小倩, 李玉菲, 崔宏安, 郭媛, 胡胜武 . 油菜和小麦种苗根系对乙草胺的耐性差异分析. 植物保护学报, 2017,44:337-342
doi: 10.13802/j.cnki.zwbhxb.2017.2015145
Wang M Z, Mu X Q, Li Y F, Cui H A, Guo Y, Hu S W . Analysis of acetochlor tolerance in root of Brassica napus L. and Triticum aestivum L. J Plant Prot, 2017,44:337-342 (in Chinese with English abstract)
doi: 10.13802/j.cnki.zwbhxb.2017.2015145
[36] 刘安芳, 伍莲 . 生物统计学. 重庆: 西南师范大学出版社, 2013. pp 279-285
Liu A F, Wu L. Biostatistics. Chongqing: Southwest China Normal University Press, 2013. pp 279-285(in Chinese)
[37] 唐启义, 冯明光 . DPS数据处理系统: 实验设计统计分析及数据挖掘. 北京: 科学出版社, 2007. pp 636-644, 682-690, 1027-1036
Tang Q Y, Feng M G. DPS Data Processing System: Statistical Analysis and Data Mining of Experimental Design. Beijing: Science Press, 2007. pp 636-644, 682-690, 1027-1036(in Chinese)
[38] 闫锋, 崔秀辉, 李清泉, 王成, 曾玲玲, 刘峰, 马波, 袁明 . 绿豆品种的灰色关联度分析及综合评价. 中国种业, 2011, ( 增刊2):31-33
Yan F, Cui X H, Li Q Q, Wang C, Zeng L L, Liu F, Ma B, Yuan M . Grey relational grade analysis and comprehensive evaluation of mungbean (Vigna radiata L.) germplasm resources. Chin Seed Ind, 2011, ( suppl-2):31-33 (in Chinese with English abstract)
[39] Upadhyaya Hari D . Variability for drought resistance related traits in the mini core collection of peanut. Crop Sci, 2005,45:1432-1440
doi: 10.2135/cropsci2004.0389
[40] 汪灿, 周棱波, 张国兵, 张立异, 徐燕, 高旭, 姜讷, 邵明波 . 薏苡种质资源萌发期抗旱性鉴定及抗旱指标筛选. 植物遗传资源学报, 2017,18:846-859
doi: 10.13430/j.cnki.jpgr.2017.05.006
Wang C, Zhou L B, Zhang G B, Zhang L Y, Xu Y, Gao X, Jiang N, Shao M B . Identification and indices screening of drought resistance in Job’s tears germplasm resources at germination stage. J Plant Genet Resour, 2017,18:846-859 (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.2017.05.006
[41] 于泉林, 武宝悦 . 不同作物对苯磺隆残留敏感性室内模拟研究. 河北职业技术师范学院学报, 2003,17(1):16-19
Yu Q L, Wu B Y . Different crops on the sensitivity of the indoor simulation of tribenuron-methyl residues. J Hebei Normal Univ Sci Technol, 2003,17(1):16-19 (in Chinese)
[42] 牛志锋, 杜慧玲 . 不同小麦品种对苯磺隆除草剂的耐药性研究. 山西农业科学, 2008,36(2):28-29
doi: 10.3969/j.issn.1002-2481.2008.02.011
Niu Z F, Du H L . Study on tolerance of different wheat variety to tribenuron-methyl. J Shanxi Agric Sci, 2008,36(2):28-29 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-2481.2008.02.011
[43] 娄国强, 吕文彦, 职明星 . 苯磺隆、苄嘧磺隆对不同小麦品种安全性及叶绿素含量的影响. 中国农学通报, 2005,21(10):317-320
doi: 10.3969/j.issn.1000-6850.2005.10.089
Lou G Q, Lyu W Y, Zhi M X . Studies on safety tribenuron- methyl and bensulfuron-methyl and their impact to the content of chlorophyll. Chin Agric Sci Bull, 2005,21(10):317-320 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-6850.2005.10.089
[44] 范志金, 钱传范, 于维强, 陈俊鹏, 李正名, 王玲秀 . 氯磺隆和苯磺隆对玉米乙酰乳酸合成酶抑制作用的研究. 中国农业科学, 2003,36:173-178
Fan Z J, Qian C F, Yu W Q, Chen J P, Li Z M, Wang L X . Study on enzymatic inhibition of acetolactate synthase from maize (Zea mays L.) by chlorsulfuron and tribenuron-methyl. Sci Agric Sin, 2003,36:173-178 (in Chinese with English abstract)
[45] 李脉泉, 化宿南, 郭兵福, 刘明, 宋健, 陈建港, 周福来, 于莉莉, 陶波, 邱丽娟 . 大豆微核心种质对草甘膦的耐受性鉴定. 植物遗传资源学报, 2015,16:940-946
doi: 10.13430/j.cnki.jpgr.2015.05.003
Li M Q, Hua S N, Guo B F, Liu M, Song J, Chen J G, Zhou F L, Yu L L, Tao B, Qiu L J . Identification of glyphosate-tolerance in soybean mini-core collection. J Plant Genet Resour, 2015,16:940-946 (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.2015.05.003
[46] 王园园 . 棉花草甘膦自然抗性评价及抗性基因源挖掘研究. 中国农业科学院博士学位论文, 北京, 2015
doi: 10.7666/d.Y2787485
Wang Y Y . Identification of Natural Resistance to Glyphosate in Gossypium and the Excavation of Glyphosate-resistant Gene Resources in Gossypium hirsutum Races. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract)
doi: 10.7666/d.Y2787485
[47] 苏少泉 . 抗咪唑啉酮类除草剂作物的发展与未来. 现代农药, 2006,5(1):1-4
Su S Q . The development and future of imidazolinone herbicide-resistant crops. Mod Agrochem, 2006,5(1):1-4 (in Chinese)
[48] 王米道, 程凤侠, 司友斌 . 铜与草甘膦复合污染对小麦种子发芽与根伸长的抑制作用. 生态毒理学报, 2009,4:591-596
Wang M D, Cheng F X, Si Y B . The inhibition of the combined pollution of copper and glyphosate to the seed germination and root elongation of wheat. Asian J Ecotoxicol, 2009,4:591-596 (in Chinese with English abstract)
[49] 杜小娟, 梁婷婷, 慕小倩 . 8种常用除草剂对黄芩种子萌发及幼苗生长的影响. 西北农业学报, 2012,21:202-206
doi: 10.3969/j.issn.1004-1389.2012.04.040
Du X J, Liang T T, Mu X Q . Effects of eight herbicides on seed germination and seedling growth of Scutellaria baicalensis Georg. Acta Agric Boreali-Occident Sin, 2012,21:202-206 (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-1389.2012.04.040
[1] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[2] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[3] ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39.
[4] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[5] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[6] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[7] ZHANG Chun, ZHAO Xiao-Zhen, PANG Cheng-Ke, PENG Men-Lu, WANG Xiao-Dong, CHEN Feng, ZHANG Wei, CHEN Song, PENG Qi, YI Bin, SUN Cheng-Ming, ZHANG Jie-Fu, FU Ting-Dong. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 650-659.
[8] WEI Li-Juan, SHEN Shu-Lin, HUANG Xiao-Hu, MA Guo-Qiang, WANG Xi-Tong, YANG Yi-Ling, LI Huan-Dong, WANG Shu-Xian, ZHU Mei-Chen, TANG Zhang-Lin, LU Kun, LI Jia-Na, QU Cun-Min. Genome-wide association analysis reveals zinc-tolerant loci of rapeseed at germination stage [J]. Acta Agronomica Sinica, 2021, 47(2): 262-274.
[9] XIE Pan, LIU Wei, KANG Yu, HUA Wei, QIAN Lun-Wen, GUAN Chun-Yun, HE Xin. Identification and relative expression analysis of CBF gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2394-2406.
[10] SUN Zhi-Guang, WANG Bao-Xiang, ZHOU Zhen-Ling, FANG Lei, CHI Ming, LI Jing-Fang, LIU Jin-Bo, Bello Babatunde Kazeem, XU Da-Yong. Screening of germplasm resources and QTL mapping for germinability under submerged condition in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(1): 61-70.
[11] FENG Tao,TAN Hui,GUAN Mei,GUAN Chun-Yun. Mechanism of BnaBZR1 and BnaPIF4 regulating photosynthetic efficiency in oilseed rape (Brassica napus L.) under poor light [J]. Acta Agronomica Sinica, 2020, 46(8): 1146-1156.
[12] Li-Ge BAO,Ping LU,Meng-Sha SHI,Yue XU,Min-Xuan LIU. Screening and identification of Chinese sorghum landraces for salt tolerance at germination and seedling stages [J]. Acta Agronomica Sinica, 2020, 46(5): 734-744.
[13] ZHANG Xiao-Jun,XIAO Jin,WANG Hai-Yan,QIAO Lin-Yi,LI Xin,GUO Hui-juan,CHANG Li-Fang,ZHANG Shu-Wei,YAN Xiao-Tao,CHANG Zhi-Jian,WU Zong-Xin. Evaluation of resistance to Fusarium head blight in Thinopyrum-derived wheat lines [J]. Acta Agronomica Sinica, 2020, 46(01): 62-73.
[14] SUN Cheng-Ming,CHEN Feng,CHEN Song,PENG Qi,ZHANG Wei,YI Bin,ZHANG Jie-Fu,FU Ting-Dong. Genome-wide association study of seed number per silique in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(01): 147-153.
[15] SUN Cheng-Ming,CHEN Song,PENG Qi,ZHANG Wei,YI Bin,ZHANG Jie-Fu,FU Ting-Dong. Genome-wide association study of silique length in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2019, 45(9): 1303-1310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!