Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (1): 1-9.doi: 10.3724/SP.J.1006.2019.82032
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Next Articles
Ya-Ping CHEN,Rong MIAO,Xi LIU,Ben-Jia CHEN,Jie LAN,Teng-Fei MA,Yi-Hua WANG,Shi-Jia LIU,Ling JIANG()
[1] |
Xing Y, Zhang Q . Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010,61:421-442.
doi: 10.1146/annurev-arplant-042809-112209 pmid: 20192739 |
[2] |
Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q . Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010,107:19579-19584.
doi: 10.1073/pnas.1014419107 |
[3] |
Song X J, Huang W, Shi M, Zhu M Z, Lin H X . A QTL for rice grain width and weight encodes a previously unknown RING- type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630.
doi: 10.1038/ng2014 pmid: 17417637 |
[4] |
Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q . A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015,8:1455-1465.
doi: 10.1016/j.molp.2015.07.002 pmid: 26187814 |
[5] |
Wu W, Liu X, Wang M, Meyer R S, Luo X, Ndjiondjop M N, Tan L, Zhang J, Wu J, Cai H, Sun C, Wang X, Wing RA, Zhu Z . A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat Plants, 2017,3:17064-17071.
doi: 10.1038/nplants.2017.64 pmid: 28481332 |
[6] |
Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q . Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015,47:944-952.
doi: 10.1038/ng.3346 pmid: 26147619 |
[7] |
Xu C, Liu Y, Li Y, Xu X, Xu C, Li X, Xiao J, Zhang Q . Differential expression of GS5 regulates grain size in rice. J Exp Bot, 2015,66:2611-2634.
doi: 10.1093/jxb/erv058 pmid: 25711711 |
[8] |
Li J, Chu H, Zhang Y, Mou T, Wu C, Zhang Q, Xu J . The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight. PLoS One, 2012,7:e34231.
doi: 10.1371/journal.pone.0034231 pmid: 22457828 |
[9] |
Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z . Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008,40:1370-1374.
doi: 10.1038/ng.220 pmid: 18820698 |
[10] |
Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E . Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013,45:707-711.
doi: 10.1038/ng.2612 pmid: 23583977 |
[11] |
Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X . Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet, 2012,44:950-954.
doi: 10.1038/ng.2327 pmid: 22729225 |
[12] |
Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K, Zhang X, Guo X, Wang J, Wang H, Wan J M . GW5 acts in the brassinosteroid signaling pathway to regulate grain width and weight in rice. Nat Plants, 2017,3:17043-17080.
doi: 10.1038/nplants.2017.43 pmid: 28394310 |
[13] |
Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M . A rice brassinosteroid-deficient mutant,ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003,15:2900-2910.
doi: 10.1105/tpc.014712 pmid: 14615594 |
[14] |
Liu L, Tong H, Xiao Y, Che R, Xu F, Hu B, Liang C, Chu J, Li J, Chu C . Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci USA, 2015,112:11102-11107.
doi: 10.1073/pnas.1512748112 pmid: 26283354 |
[15] |
Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S . OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced in response to cold and gibberellin in rice leaf sheath. Plant Mol Biol, 2004,55:541-552.
doi: 10.1007/s11103-004-1178-y pmid: 15604699 |
[16] | Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M . Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000,12:1591-1605. |
[17] |
Liu S, Hua L, Dong S, Chen H, Zhu X, Jiang J, Zhang F, Li Y, Fang X, Chen F . OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. Plant J, 2015,84:672-681.
doi: 10.1111/tpj.13025 pmid: 26366992 |
[18] | Xia K, Ou X, Tang H, Wang R, Wu P, Jia Y, Wei X, Xu X, Kang S H, Kim S K, Zhang M . Rice microRNA osa-miR1848 targets the obtusifoliol 14α-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress. New Phytol, 2015,208:790-802. |
[19] |
Zhang S, Wu T, Liu S, Liu X, Jiang L, Wan J . Disruption of OsARF19 is critical for floral organ development and plant architecture in rice( Oryza sativa L.). Plant Mol Biol Rep, 2016,34:748-760.
doi: 10.1007/s11105-015-0962-y |
[20] |
Horiguchi G, Ferjani A, Fujikura U, Tsukaya H . Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res, 2006,119:37-42.
doi: 10.1007/s10265-005-0232-4 pmid: 16284709 |
[21] | Horvath B M, Magyar Z, Zhang Y, Hamburger A W, Bako L, Visser R G, Bachem C W, Bogre L . EBP1 regulates organ size through cell growth and proliferation in plants. EMBO J, 2006,25:4909-4920. |
[22] |
Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E . Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013,45:707-718.
doi: 10.1038/ng.2612 pmid: 23583977 |
[23] | Nakamura A, Matsuoka M . The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiol, 2006,140:580-590. |
[24] |
Andrzej B . Metabolism of brassinosteroids in plants. Plant Physiol Biochem, 2007,45:95-107.
doi: 10.1016/j.plaphy.2007.01.002 pmid: 17346983 |
[25] |
Hong Z, Ueguchitanaka M, Shimizusato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M . Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J, 2002,32:495-508.
doi: 10.1046/j.1365-313X.2002.01438.x |
[26] |
Sakamoto T, Morinaka Y, Inukai Y, Kitano H, Fujioka S . Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. Plant J, 2013,73:676-688.
doi: 10.1111/tpj.12071 pmid: 23146214 |
[27] |
Gui J, Zheng S, Liu C, Shen J, Li J, Li L . OsREM4.1 interacts with OsSERK1 to coordinate the interlinking between abscisic acid and brassinosteroid signaling in rice. Dev Cell, 2016,38:201-214.
doi: 10.1016/j.devcel.2016.06.011 pmid: 27424498 |
[28] |
Zhu X, Liang W, Cui X, Chen M, Yin C, Luo Z, Zhu J, Lucas W J, Wang Z, Zhang D . Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein. Plant J, 2015,82:570-581.
doi: 10.1111/tpj.12820 pmid: 25754973 |
[29] |
Bai M Y, Zhang L Y, Gampala S S, Zhu S W, Song W Y, Chong K, Wang Z Y . Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci USA, 2007,104:13839-13844.
doi: 10.1073/pnas.0706386104 |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
[4] | XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579. |
[5] | WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746. |
[6] | ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352. |
[7] | JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227. |
[8] | JIANG Cheng-Gong, SHI Hui-Min, WANG Hong-Wu, LI Kun, HUANG Chang-Ling, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, MA Qing. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize [J]. Acta Agronomica Sinica, 2021, 47(2): 285-293. |
[9] | GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172. |
[10] | HUANG Yan, HE Huan-Huan, XIE Zhi-Yao, LI Dan-Ying, ZHAO Chao-Yue, WU Xin, HUANG Fu-Deng, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a dwarf and wide-leaf mutant osdwl1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(1): 50-60. |
[11] | JIANG Hong-Rui, YE Ya-Feng, HE Dan, REN Yan, YANG Yang, XIE Jian, CHENG Wei-Min, TAO Liang-Zhi, ZHOU Li-Bin, WU Yue-Jin, LIU Bin-Mei. Identification and gene localization of a novel rice brittle culm mutant bc17 [J]. Acta Agronomica Sinica, 2021, 47(1): 71-79. |
[12] | SHI Hui-Min, JIANG Cheng-Gong, WANG Hong-Wu, MA Qing, LI Kun, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, HUANG Chang-Ling. Phenotype identification and gene mapping of defective kernel 48 mutant (dek48) in maize [J]. Acta Agronomica Sinica, 2020, 46(9): 1359-1367. |
[13] | HAN Zhan-Yu,GUAN Xian-Yue,ZHAO Qian,WU Chun-Yan,HUANG Fu-Deng,PAN Gang,CHENG Fang-Min. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains [J]. Acta Agronomica Sinica, 2020, 46(7): 1087-1098. |
[14] | TIAN Shi-Ke, QIN Xin-Er, ZHANG Wen-Liang, DONG Xue, DAI Ming-Qiu, YUE Bing. Genetic analysis and characterization of male sterile mutant mi-ms-3 in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 1991-1996. |
[15] | XIE Yuan-Hua,LI Feng-Fei,MA Xiao-Hui,TAN Jia,XIA Sai-Sai,SANG Xian-Chun,YANG Zheng-Lin,LING Ying-Hua. Phenotype characterization and gene mapping of the semi-outcurved leaf mutant sol1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 204-213. |
|